The groundwater level of 39 observation wells including 35 unconfined wells and 4 confined wells from 2004 to 2006 in North China Plain(NCP) was monitored using automatic groundwater monitoring data loggers KADEC-MIZU...The groundwater level of 39 observation wells including 35 unconfined wells and 4 confined wells from 2004 to 2006 in North China Plain(NCP) was monitored using automatic groundwater monitoring data loggers KADEC-MIZU II of Japan.The automatic groundwater sensors were installed for the corporation project between China and Japan.Combined with the monitoring results from 2004 to 2006 with the major factors affecting the dynamic patterns of groundwater, such as topography and landform, depth of groundwater level, exploitation or discharge extent, rivers and lakes, the dynamic regions of NCP groundwater were gotten.According to the dynamic features of groundwater in NCP, six dynamic patterns of groundwater level were identified, including discharge pattern in the piedmont plain, lateral recharge-runoff-discharge pattern in the piedmont plain, recharge-discharge pattern in the central channel zone, precipitation infiltration-evaporation pattern in the shallow groundwater region of the central plain, lateral recharge-evaporation pattern in the recharge-affected area along the Yellow River and infiltration-discharge-evaporation pattern in the littoral plain.Based on this, the groundwater fluctuation features of various dynamic patterns were interpreted and the influencing factors of different dynamic patterns were compared.展开更多
As groundwater table declination is an important factor resulting in degradation of eco-environment in the Minqin Basin, China, it is significant to investigate and understand the groundwater table dynamics in this ar...As groundwater table declination is an important factor resulting in degradation of eco-environment in the Minqin Basin, China, it is significant to investigate and understand the groundwater table dynamics in this area. According to the physical and geographical conditions of the Minqin Basin, a hydrogeological conceptual model and a mathematical model were established, and the mathematical model was figured out by using Finite Element subsurface Flow system (Feflow). Accurate hydrogeological parameters were acquired, and the spatio-temporal distribution dynamics of groundwater table for 1983-2001 were also simulated. The model performed well with a correlation coefficient of 0.977 and a mean error of 0.9768 m. The inflow and outflow of the groundwater system were predicted by time series analysis, and the groundwater table dynamics for 2011 were further acquired. Gen- erally the groundwater table in the Minqin Basin would continue to decline. The groundwater table would decline during spring and summer irrigation, while it would rise during autumn-winter irrigation. The groundwater depression cones would expand with the increase of center depths. Therefore, regulatory measures should be taken to prevent the declination of groundwater table and improve the eco-environment of this area.展开更多
[Objective] The aim was to provide theoretical basis for the study of underground water dynamic changes in Songnen Plain in Jilin Province.[Method] The dynamic changes and driving factors for the underground water in ...[Objective] The aim was to provide theoretical basis for the study of underground water dynamic changes in Songnen Plain in Jilin Province.[Method] The dynamic changes and driving factors for the underground water in Songnen Plain in Jilin Province was expounded.[Result] Since 1960s,the temperature in the Songnen Plain in Jilin Province increased gradually.The average temperature increased 2℃;precipitation reduced gradually.Especially,the trend of precipitation reduction in west area was more distinct;in the meantime,the development of underground water augmented gradually and reached 2 800 million m3 in 2008.Driven by many factors,regional underground water level had distinct changes.Potential water position reduced greatly in northwest fan-shaped area.The one in other places were stable and even increased in certain parts;confined water position decreased quickly in general and it increased in certain parts.[Conclusion] The general deterioration trend of underground water environment was inevitable.But,the deterioration process can be eased through scientific planning and regional underground water resources so as to realize sustainable utilization of regional underground water resources.展开更多
To study the groundwater dynamic in the typical region of Sanjiang Plain, long-term groundwater level observation data in the Honghe State Farm were collected and analyzed in this paper. The seasonal and long-term gro...To study the groundwater dynamic in the typical region of Sanjiang Plain, long-term groundwater level observation data in the Honghe State Farm were collected and analyzed in this paper. The seasonal and long-term groundwater dynamic was explored. From 1996 to 2008, groundwater level kept declining due to intensive exploitation of groundwater resources for rice irrigation. A decline of nearly 5 m was found for almost all the monitoring wells. A time-series method was established to model the groundwater dynamic. Modeled results by time-series model showed that the groundwater level in this region would keep declining according to the current exploitation intensity. A total dropdown of 1.07 m would occur from 2009 to 2012. Time-series model can be used to model and forecast the groundwater dynamic with high accuracy. Measures including control on groundwater exploitation amount and application of water saving irrigation technique should be taken to prevent the continuing declining of groundwater in the Sanjiang Plain.展开更多
基金National Natural Sciences Foundation of China,No.40671034 No.40830636
文摘The groundwater level of 39 observation wells including 35 unconfined wells and 4 confined wells from 2004 to 2006 in North China Plain(NCP) was monitored using automatic groundwater monitoring data loggers KADEC-MIZU II of Japan.The automatic groundwater sensors were installed for the corporation project between China and Japan.Combined with the monitoring results from 2004 to 2006 with the major factors affecting the dynamic patterns of groundwater, such as topography and landform, depth of groundwater level, exploitation or discharge extent, rivers and lakes, the dynamic regions of NCP groundwater were gotten.According to the dynamic features of groundwater in NCP, six dynamic patterns of groundwater level were identified, including discharge pattern in the piedmont plain, lateral recharge-runoff-discharge pattern in the piedmont plain, recharge-discharge pattern in the central channel zone, precipitation infiltration-evaporation pattern in the shallow groundwater region of the central plain, lateral recharge-evaporation pattern in the recharge-affected area along the Yellow River and infiltration-discharge-evaporation pattern in the littoral plain.Based on this, the groundwater fluctuation features of various dynamic patterns were interpreted and the influencing factors of different dynamic patterns were compared.
基金funded by the National Natural Science Foundation of China(50879071 and 40801103)the Ph.D.Programs Foundation of the Ministry of Education of China (200800271029)
文摘As groundwater table declination is an important factor resulting in degradation of eco-environment in the Minqin Basin, China, it is significant to investigate and understand the groundwater table dynamics in this area. According to the physical and geographical conditions of the Minqin Basin, a hydrogeological conceptual model and a mathematical model were established, and the mathematical model was figured out by using Finite Element subsurface Flow system (Feflow). Accurate hydrogeological parameters were acquired, and the spatio-temporal distribution dynamics of groundwater table for 1983-2001 were also simulated. The model performed well with a correlation coefficient of 0.977 and a mean error of 0.9768 m. The inflow and outflow of the groundwater system were predicted by time series analysis, and the groundwater table dynamics for 2011 were further acquired. Gen- erally the groundwater table in the Minqin Basin would continue to decline. The groundwater table would decline during spring and summer irrigation, while it would rise during autumn-winter irrigation. The groundwater depression cones would expand with the increase of center depths. Therefore, regulatory measures should be taken to prevent the declination of groundwater table and improve the eco-environment of this area.
基金Supported by Chinese Geographic Investigation Bureau Financial Support Project(1212010813093)~~
文摘[Objective] The aim was to provide theoretical basis for the study of underground water dynamic changes in Songnen Plain in Jilin Province.[Method] The dynamic changes and driving factors for the underground water in Songnen Plain in Jilin Province was expounded.[Result] Since 1960s,the temperature in the Songnen Plain in Jilin Province increased gradually.The average temperature increased 2℃;precipitation reduced gradually.Especially,the trend of precipitation reduction in west area was more distinct;in the meantime,the development of underground water augmented gradually and reached 2 800 million m3 in 2008.Driven by many factors,regional underground water level had distinct changes.Potential water position reduced greatly in northwest fan-shaped area.The one in other places were stable and even increased in certain parts;confined water position decreased quickly in general and it increased in certain parts.[Conclusion] The general deterioration trend of underground water environment was inevitable.But,the deterioration process can be eased through scientific planning and regional underground water resources so as to realize sustainable utilization of regional underground water resources.
基金Under the auspices of the Projects of the National Basis Research Program of China (2009CB421103)the Key Direction Program of the Chinese Academy of Science (KZCX2-YW-309-04, KZCX2-YW-Q06-03)National Natural Science Foundation of China(41001050)
文摘To study the groundwater dynamic in the typical region of Sanjiang Plain, long-term groundwater level observation data in the Honghe State Farm were collected and analyzed in this paper. The seasonal and long-term groundwater dynamic was explored. From 1996 to 2008, groundwater level kept declining due to intensive exploitation of groundwater resources for rice irrigation. A decline of nearly 5 m was found for almost all the monitoring wells. A time-series method was established to model the groundwater dynamic. Modeled results by time-series model showed that the groundwater level in this region would keep declining according to the current exploitation intensity. A total dropdown of 1.07 m would occur from 2009 to 2012. Time-series model can be used to model and forecast the groundwater dynamic with high accuracy. Measures including control on groundwater exploitation amount and application of water saving irrigation technique should be taken to prevent the continuing declining of groundwater in the Sanjiang Plain.