As groundwater table declination is an important factor resulting in degradation of eco-environment in the Minqin Basin, China, it is significant to investigate and understand the groundwater table dynamics in this ar...As groundwater table declination is an important factor resulting in degradation of eco-environment in the Minqin Basin, China, it is significant to investigate and understand the groundwater table dynamics in this area. According to the physical and geographical conditions of the Minqin Basin, a hydrogeological conceptual model and a mathematical model were established, and the mathematical model was figured out by using Finite Element subsurface Flow system (Feflow). Accurate hydrogeological parameters were acquired, and the spatio-temporal distribution dynamics of groundwater table for 1983-2001 were also simulated. The model performed well with a correlation coefficient of 0.977 and a mean error of 0.9768 m. The inflow and outflow of the groundwater system were predicted by time series analysis, and the groundwater table dynamics for 2011 were further acquired. Gen- erally the groundwater table in the Minqin Basin would continue to decline. The groundwater table would decline during spring and summer irrigation, while it would rise during autumn-winter irrigation. The groundwater depression cones would expand with the increase of center depths. Therefore, regulatory measures should be taken to prevent the declination of groundwater table and improve the eco-environment of this area.展开更多
Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and...Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and distributions of soil water and salt in Songnen Plain,Northeast China,five levels of groundwater sodium adsorption ration of water(SARw)and total salt content(TSC mmol/L)were conducted in an oil column lysimeters.The five treated groundwater labeled as ST0:0,ST0:10,ST5:40,ST10:70 and ST20:100,were prepared with NaCl and CaCl2 in proportion,respectively.The results showed the groundwater evaporation(GWE)and soil evaporation(SE)increased firstly and then decreased with the increase of groundwater salinity.The values of GWE and SE in ST10:70 treatment were the highest,which were 2.09 and 1.84 times the values in the ST0:0 treatment with the lowest GWE and SE.There was a positive linear correlation between GWE and the Ca^(2+)content in groundwater,with R^(2)=0.998.The soil water content(SWC)of ST0:0 treatment was significantly(P<0.05)less than those of other treatments during the test.The SWC of the ST0:0 and ST0:10 treatments increased with the increase of soil depth,while the other treatments showed the opposite trend.Statistical analysis indicated the SWC in the 0–60 cm soil layer was positively correlated with the groundwater TSC and its ion contents during the test.Salt accumulation occurred in the topsoil and the salt accumulation in the 0–20 cm soil layer was significantly(P<0.05)greater than that in the subsoil.This study revealed the effects of the salinity level of groundwater,especially the Ca^(2+)content and TSC of groundwater,on the GWE and distributions of soil water and salt,which provided important support for the prevention and reclamation of soil salinization and sodificaton in shallow groundwater regions.展开更多
The Badain Jaran Desert is the second largest desert in China with tallest sand dunes on the earth.In contrast to the extremely dry climate,there are about 100 lakes spreading regularly over the depressions among high
To test the patterns of the root morphology and architecture indexes of Tamarix chinensis in response to water and salt changes in the two media of the groundwater and soil,three-year-old T.chinensis seedlings were ch...To test the patterns of the root morphology and architecture indexes of Tamarix chinensis in response to water and salt changes in the two media of the groundwater and soil,three-year-old T.chinensis seedlings were chosen as the research object.Groundwater with four salinity levels was created,and three groundwater level(GL)were applied for each salinity treatment to measure the root growth and architecture indexes.In the fresh water and brackish water treatments,the topological index(TI)of the T.chinensis roots was close to 0.5,and the root architecture was close to a dichotomous branching pattern.In the saline water and saltwater treatments,the TI of the T.chinensis roots was large and close to 1.0,and the root architecture was close to a herringbone-like branching pattern.Under different GLs and salinities,the total root length was significantly greater than the internal link length,the external link length was greater than the internal link length,and the root system showed an outward expansion strategy.The treatment with fresh water and a GL of 1.5 m was the most suitable for T.chinensis root growth,while the root growth of T.chinensis was the worst in the treatment with saline water and a GL of 0.3 m.T.chinensis can adapt to the changes in soil water and salt by regulating the growth and morphological characteristics of the root system.T.chinensis can adapt to high-salt environments by reducing its root branching and to water deficiencies by expanding the distribution and absorption area of the root system.展开更多
Aims Since 2000,the environmental flow controls project has been implemented in the lower Heihe River Basin,a typical arid inland river basin in northwest China,to restore the deteriorated ecological environment in th...Aims Since 2000,the environmental flow controls project has been implemented in the lower Heihe River Basin,a typical arid inland river basin in northwest China,to restore the deteriorated ecological environment in this region.The aim of this study was to explore the impacts of groundwater fluctuations on vegetation dynamics.Our results can be used as a reference for water resources planning and management to maintain proper environmental flows in arid areas.Methods The location(by Global Positioning System)and depth of the monitoring wells,as well as groundwater table depth and salinity were measured in situ at each site from July to August 2009.Based on the measurements of the groundwater table depth and salinity following the implementation of environmental flow controls project(EFCP)in the lower Heihe River Basin,the groundwater fluctuations during the period from 2001 to 2009 were analyzed.Descriptive statistics and Pearson’s correlation were used to analyze the relationship between vegetation changes and groundwater table fluctuations.Additionally,the spatial distributions of the groundwater table depth and salinity were interpolated using the simple kriging method.Trend analysis was applied to the time series of integrated Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index data to identify interannual vegetation dynamics.The relationship between vegetation status and groundwater environment was investigated at different spatial scales by analyzing and comparing the time series and trends.Important Findings(i)The groundwater table and salinity increased significantly in most of the study area with spatial heterogeneity.On average,the groundwater table rose;0.5 and 1.5 m in the upper and lower Ejina Basin,respectively,and the groundwater salinity increased across the study area by 0–4%.(ii)A notable correlation between the vegetation status and the groundwater table was revealed when the groundwater table depth fluctuated between 1.8 and 3.5 m,whereas the vegetation did not show an obvious response to groundwater table changes when the groundwater table depth was more than 5–6 m.(iii)Vegetation restoration mainly occurred in riparian areas within 500–1000 m of from natural rivers,where the groundwater table depth varied from 2 to 4 m,and salinity was<5%,whereas vegetation degradation appeared at some locations where groundwater environment had deteriorated.展开更多
基金funded by the National Natural Science Foundation of China(50879071 and 40801103)the Ph.D.Programs Foundation of the Ministry of Education of China (200800271029)
文摘As groundwater table declination is an important factor resulting in degradation of eco-environment in the Minqin Basin, China, it is significant to investigate and understand the groundwater table dynamics in this area. According to the physical and geographical conditions of the Minqin Basin, a hydrogeological conceptual model and a mathematical model were established, and the mathematical model was figured out by using Finite Element subsurface Flow system (Feflow). Accurate hydrogeological parameters were acquired, and the spatio-temporal distribution dynamics of groundwater table for 1983-2001 were also simulated. The model performed well with a correlation coefficient of 0.977 and a mean error of 0.9768 m. The inflow and outflow of the groundwater system were predicted by time series analysis, and the groundwater table dynamics for 2011 were further acquired. Gen- erally the groundwater table in the Minqin Basin would continue to decline. The groundwater table would decline during spring and summer irrigation, while it would rise during autumn-winter irrigation. The groundwater depression cones would expand with the increase of center depths. Therefore, regulatory measures should be taken to prevent the declination of groundwater table and improve the eco-environment of this area.
基金Under the auspices of National Key Research and Development Program of China(No.2022YFD1500501)National Natural Science Foundation of China(No.41971066)+1 种基金Key Laboratory Foundation of Mollisols Agroecology(No.2020ZKHT-03)High Tech Fund Project of S&T Cooperation Between Jilin Province and Chinese Academy of Sciences(No.2022SYHZ0018)。
文摘Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and distributions of soil water and salt in Songnen Plain,Northeast China,five levels of groundwater sodium adsorption ration of water(SARw)and total salt content(TSC mmol/L)were conducted in an oil column lysimeters.The five treated groundwater labeled as ST0:0,ST0:10,ST5:40,ST10:70 and ST20:100,were prepared with NaCl and CaCl2 in proportion,respectively.The results showed the groundwater evaporation(GWE)and soil evaporation(SE)increased firstly and then decreased with the increase of groundwater salinity.The values of GWE and SE in ST10:70 treatment were the highest,which were 2.09 and 1.84 times the values in the ST0:0 treatment with the lowest GWE and SE.There was a positive linear correlation between GWE and the Ca^(2+)content in groundwater,with R^(2)=0.998.The soil water content(SWC)of ST0:0 treatment was significantly(P<0.05)less than those of other treatments during the test.The SWC of the ST0:0 and ST0:10 treatments increased with the increase of soil depth,while the other treatments showed the opposite trend.Statistical analysis indicated the SWC in the 0–60 cm soil layer was positively correlated with the groundwater TSC and its ion contents during the test.Salt accumulation occurred in the topsoil and the salt accumulation in the 0–20 cm soil layer was significantly(P<0.05)greater than that in the subsoil.This study revealed the effects of the salinity level of groundwater,especially the Ca^(2+)content and TSC of groundwater,on the GWE and distributions of soil water and salt,which provided important support for the prevention and reclamation of soil salinization and sodificaton in shallow groundwater regions.
文摘The Badain Jaran Desert is the second largest desert in China with tallest sand dunes on the earth.In contrast to the extremely dry climate,there are about 100 lakes spreading regularly over the depressions among high
基金financially supported by the Joint Funds of the National Natural Science Foundation of China(U2006215)the National Natural Science Foundation of China(31770761)+2 种基金the Shandong Key Laboratory of Coastal Environmental Processes,YICCAS(2019SDHADKFJJ16)the Natural Science Foundation of Shangdong Province(ZR2020QD003)Taishan Scholars Program of Shandong Province,China(TSQN201909152)。
文摘To test the patterns of the root morphology and architecture indexes of Tamarix chinensis in response to water and salt changes in the two media of the groundwater and soil,three-year-old T.chinensis seedlings were chosen as the research object.Groundwater with four salinity levels was created,and three groundwater level(GL)were applied for each salinity treatment to measure the root growth and architecture indexes.In the fresh water and brackish water treatments,the topological index(TI)of the T.chinensis roots was close to 0.5,and the root architecture was close to a dichotomous branching pattern.In the saline water and saltwater treatments,the TI of the T.chinensis roots was large and close to 1.0,and the root architecture was close to a herringbone-like branching pattern.Under different GLs and salinities,the total root length was significantly greater than the internal link length,the external link length was greater than the internal link length,and the root system showed an outward expansion strategy.The treatment with fresh water and a GL of 1.5 m was the most suitable for T.chinensis root growth,while the root growth of T.chinensis was the worst in the treatment with saline water and a GL of 0.3 m.T.chinensis can adapt to the changes in soil water and salt by regulating the growth and morphological characteristics of the root system.T.chinensis can adapt to high-salt environments by reducing its root branching and to water deficiencies by expanding the distribution and absorption area of the root system.
基金National Basic Research Program of China(973 Program)(No.2009CB421305)47th China Postdoctoral Science Foundation(No.20100470534)+1 种基金National Natural Science Foundation of China(No.40701050,40901024 and 91025023)and Hundred Talents Program of the Chinese Academy of Sciences。
文摘Aims Since 2000,the environmental flow controls project has been implemented in the lower Heihe River Basin,a typical arid inland river basin in northwest China,to restore the deteriorated ecological environment in this region.The aim of this study was to explore the impacts of groundwater fluctuations on vegetation dynamics.Our results can be used as a reference for water resources planning and management to maintain proper environmental flows in arid areas.Methods The location(by Global Positioning System)and depth of the monitoring wells,as well as groundwater table depth and salinity were measured in situ at each site from July to August 2009.Based on the measurements of the groundwater table depth and salinity following the implementation of environmental flow controls project(EFCP)in the lower Heihe River Basin,the groundwater fluctuations during the period from 2001 to 2009 were analyzed.Descriptive statistics and Pearson’s correlation were used to analyze the relationship between vegetation changes and groundwater table fluctuations.Additionally,the spatial distributions of the groundwater table depth and salinity were interpolated using the simple kriging method.Trend analysis was applied to the time series of integrated Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index data to identify interannual vegetation dynamics.The relationship between vegetation status and groundwater environment was investigated at different spatial scales by analyzing and comparing the time series and trends.Important Findings(i)The groundwater table and salinity increased significantly in most of the study area with spatial heterogeneity.On average,the groundwater table rose;0.5 and 1.5 m in the upper and lower Ejina Basin,respectively,and the groundwater salinity increased across the study area by 0–4%.(ii)A notable correlation between the vegetation status and the groundwater table was revealed when the groundwater table depth fluctuated between 1.8 and 3.5 m,whereas the vegetation did not show an obvious response to groundwater table changes when the groundwater table depth was more than 5–6 m.(iii)Vegetation restoration mainly occurred in riparian areas within 500–1000 m of from natural rivers,where the groundwater table depth varied from 2 to 4 m,and salinity was<5%,whereas vegetation degradation appeared at some locations where groundwater environment had deteriorated.