A person is considered as information-energy system with a host of feedbacks. The possibility of determining the statistical characteristics in a multiple intelligences profile of various social groups’ representativ...A person is considered as information-energy system with a host of feedbacks. The possibility of determining the statistical characteristics in a multiple intelligences profile of various social groups’ representatives using the vibraimage technology is investigated. Theft and alcohol abuse have been chosen as examples of significant social problems including deviant behavior and the trigger of formation of various socially vulnerable groups. The comparative analysis of conscious and unconscious attitudes in multiple intelligences structure of individuals prone to deviant behavior and the control group allows differentiating professional preferences and the impact of society on different social groups.展开更多
Compared with common intelligent service,full-scene intelligent service has its uniqueness in high integration,synergy,and technological spillover.However,the traditional service or business model theories cannot prec...Compared with common intelligent service,full-scene intelligent service has its uniqueness in high integration,synergy,and technological spillover.However,the traditional service or business model theories cannot precisely elaborate its sociotechnical contextual nature and value creation logic.To fill this knowledge gap,we provide initial insights into the value co-creation logic in full-scene intelligent service by exploring the value co-creation elements using a data-driven text mining approach.We analyzed 171 business reports on the full-scene intelligent service by the topic modeling using the Latent Dirichlet Allocation(LDA).The findings reveal three main clusters:value proposition,participants,and connection platform.This study presents a theoretical framework for a further exploratory case study and quantitative research on full-scene intelligent service.This study also helps small and medium-sized enterprises to explore and exploit value co-creation opportunities.展开更多
The Intelligent Grouping and Resource Sharing (IGRS) standard is set to enable intelligent grouping, resource sharing and services collaboration among information devices. An IGRS system adopts open architecture, that...The Intelligent Grouping and Resource Sharing (IGRS) standard is set to enable intelligent grouping, resource sharing and services collaboration among information devices. An IGRS system adopts open architecture, that is, the devices abide by the IGRS standard are interoperable with devices following other standards such as Universal Plug and Play (UPnP). The IGRS supports multiple application frameworks and special applications. Developers can use an IGRS media application framework with various media format standards, such as AVS and MPEG-2, to develop multimedia applications. Applied among computers, consumer electronics, and communication devices, the IGRS standard can realize resource sharing and services collaboration in a certain range of wired or wireless network domain.展开更多
This paper,based on Gardner's Multiple Intelligences Theory,aims to investigate whether the application of MI Theory in col lege English reading class can improve students'English reading proficiency.MI-catego...This paper,based on Gardner's Multiple Intelligences Theory,aims to investigate whether the application of MI Theory in col lege English reading class can improve students'English reading proficiency.MI-categorized activities are adopted in the class.The paper explores college Enlgish reading teaching strategy based on MI Theory to improve English teaching proficiency.The paper sheds some light on how MI theory could be applied in EFL.展开更多
Big data are regarded as a tremendous technology for processing a huge variety of data in a short time and with a large storage capacity.The user’s access over the internet creates massive data processing over the in...Big data are regarded as a tremendous technology for processing a huge variety of data in a short time and with a large storage capacity.The user’s access over the internet creates massive data processing over the internet.Big data require an intelligent feature selection model by addressing huge varieties of data.Traditional feature selection techniques are only applicable to simple data mining.Intelligent techniques are needed in big data processing and machine learning for an efficient classification.Major feature selection algorithms read the input features as they are.Then,the features are preprocessed and classified.Here,an algorithm does not consider the relatedness.During feature selection,all features are misread as outputs.Accordingly,a less optimal solution is achieved.In our proposed research,we focus on the feature selection by using supervised learning techniques called grey wolf optimization(GWO)with decomposed random differential grouping(DrnDG-GWO).First,decomposition of features into subsets based on relatedness in variables is performed.Random differential grouping is performed using a fitness value of two variables.Now,every subset is regarded as a population in GWO techniques.The combination of supervised machine learning with swarm intelligence techniques produces best feature optimization results in this research.Once the features are optimized,we classify using advanced kNN process for accurate data classification.The result of DrnDGGWO is compared with those of the standard GWO and GWO with PSO for feature selection to compare the efficiency of the proposed algorithm.The accuracy and time complexity of the proposed algorithm are 98%and 5 s,which are better than the existing techniques.展开更多
Goals of traditional Chinese medicine(TCM)include precision,accuracy,and recognition by clinical practice.Establishment of a diagnosis and treatment system that closely conforms to the principle-method-recipe-medicine...Goals of traditional Chinese medicine(TCM)include precision,accuracy,and recognition by clinical practice.Establishment of a diagnosis and treatment system that closely conforms to the principle-method-recipe-medicines system and derivation of an accurate diagnosis and treatment plan should be considerations of TCM.Artificial intelligence research based on computer technology is one of the effective ways to solve this problem.In the research of intelligent diagnosis path,reflecting the characteristics of the overall view and dialectical treatment of TCM such as"Combination of four diagnostic methods""overall examination""combination of disease and syndrome"and"treatment individualized to patient,season and locality"are key for successful research of artificial intelligence in TCM diagnosis or recognition by clinical practice.展开更多
Human resource management is said to be the importance of spiritual, ethical, and human values that condition human behaviour. The immediate problem that it poses for a full understanding of human functioning is that ...Human resource management is said to be the importance of spiritual, ethical, and human values that condition human behaviour. The immediate problem that it poses for a full understanding of human functioning is that the inner subjective experiences of consciousness based on human resource management. Ayurveda occupies the heights of human psychological accomplishment and could usefully call upon the insights of any of these sources to aid in addressing the problematic nature of modern-day businesses and have significant bearing on human behaviour. Manas prakrti in Ayuverda contributes to the study of personality. Tamas-Rajas-Sattva temperamental groups give rise to the framework of Space-Time-Causation when evolution starts in association with Consciousness Principle in manas prakrti. In this paper I present a methodology to analyze Temperamental groups that are found in manas prakrti by using an intelligent system. This will guide understand, instrumental values, operating values, and weak values of employees in human resource management.展开更多
There are considered rule-based intelligent systems using fuzzy inference. Comparative analysis of different approaches and algorithms of making decisions on the base of fuzzy logic is given. Using of the parallel cal...There are considered rule-based intelligent systems using fuzzy inference. Comparative analysis of different approaches and algorithms of making decisions on the base of fuzzy logic is given. Using of the parallel calculations can reduce the time of making decision in case of large-scale systems. Effectiveness of parallel calculations depends on the grouping of the rules and variables. Building of the graph of the dependence of the rules and the graph of dependence of the linguistic variables are suggested. On the base of the developed groups of rules and defuzzification of the linguistic variables we suggest to reduce the time of making decision and therefore to increase the effectiveness of the decision making with using of parallel calculations for each group.展开更多
随着城市的进步和不断发展,智能驾驶车辆逐渐代替路段中的部分人工驾驶车辆,但在未来较长时间内人工驾驶车辆并不会被完全取代,此时出现网联车与人工驾驶车辆的混驾环境,即目前以及未来时间内我们面临的驾驶环境。网联车与人工驾驶车辆...随着城市的进步和不断发展,智能驾驶车辆逐渐代替路段中的部分人工驾驶车辆,但在未来较长时间内人工驾驶车辆并不会被完全取代,此时出现网联车与人工驾驶车辆的混驾环境,即目前以及未来时间内我们面临的驾驶环境。网联车与人工驾驶车辆驾驶行为在路段内相互干扰,造成混合车流行驶效率低下。为减弱2种车辆间的相互作用,提出一种分离混驾环境下网联车和人工驾驶车辆的分阶段动态车道引导算法(dynamic lane guidance algorithm for separating CAVs and HDVs in mixed traffic environment,SCHME)。通过该算法分离在交叉口上游路段的混合流车辆集合,调整智能驾驶车辆的行驶路线并进行实时动态更新,在满足运动学约束收敛的条件下,人工驾驶车辆根据网联车的动态路线进行相应调整,实现在每辆车广义安全损失成本最小的情况下提高路段内混驾环境下车辆运行效率。通过MATLAB模拟车辆在进入交叉口前的车辆运行状态,结果表明,SCHME算法可在广义安全损失成本最小的情况下提高路段内平均车辆通行效率(17.29%),同时当车辆优化数组越大,车辆集合距离交叉口越远时,智能驾驶车辆渗透率越低,每辆车的道路广义安全损失成本越低。展开更多
目的通过机器学习分析“舌边白涎”舌象特性,对舌象进行局部特征识别研究,探讨卷积神经网络算法在舌象识别应用中的性能。方法使用Python进行图像预处理,搭建用于舌象识别的视觉几何组16层(visual geometry group 16,VGG16)卷积神经网...目的通过机器学习分析“舌边白涎”舌象特性,对舌象进行局部特征识别研究,探讨卷积神经网络算法在舌象识别应用中的性能。方法使用Python进行图像预处理,搭建用于舌象识别的视觉几何组16层(visual geometry group 16,VGG16)卷积神经网络模型,分析其对“舌边白涎”舌象鉴别分析的效果,并结合热力图分析“舌边白涎”典型舌象表现。结果基于PyTorch框架,进行卷积神经网络的舌象鉴别研究,VGG16及残差网络50层(residual network 50,ResNet50)模型验证准确率均较高,达到80%以上,且ResNet50模型优于VGG16模型,可为舌象识别提供一定参考。基于加权梯度类激活映射(gradient-weighted class activation mapping,Grad-CAM)技术,通过舌苔舌色差异分布的网络可视化,有助于直观进行模型评估分析。结论基于卷积神经网络模型对舌象数据库进行分析,实现“舌边白涎”舌象识别,有助于临床诊疗的客观化辅助分析,为舌诊智能化发展提供一定借鉴。展开更多
文摘A person is considered as information-energy system with a host of feedbacks. The possibility of determining the statistical characteristics in a multiple intelligences profile of various social groups’ representatives using the vibraimage technology is investigated. Theft and alcohol abuse have been chosen as examples of significant social problems including deviant behavior and the trigger of formation of various socially vulnerable groups. The comparative analysis of conscious and unconscious attitudes in multiple intelligences structure of individuals prone to deviant behavior and the control group allows differentiating professional preferences and the impact of society on different social groups.
基金The authors thank seminar participants at the China Academic Conference on Computer Simulation and Information Technology for their helpful comments.
文摘Compared with common intelligent service,full-scene intelligent service has its uniqueness in high integration,synergy,and technological spillover.However,the traditional service or business model theories cannot precisely elaborate its sociotechnical contextual nature and value creation logic.To fill this knowledge gap,we provide initial insights into the value co-creation logic in full-scene intelligent service by exploring the value co-creation elements using a data-driven text mining approach.We analyzed 171 business reports on the full-scene intelligent service by the topic modeling using the Latent Dirichlet Allocation(LDA).The findings reveal three main clusters:value proposition,participants,and connection platform.This study presents a theoretical framework for a further exploratory case study and quantitative research on full-scene intelligent service.This study also helps small and medium-sized enterprises to explore and exploit value co-creation opportunities.
文摘The Intelligent Grouping and Resource Sharing (IGRS) standard is set to enable intelligent grouping, resource sharing and services collaboration among information devices. An IGRS system adopts open architecture, that is, the devices abide by the IGRS standard are interoperable with devices following other standards such as Universal Plug and Play (UPnP). The IGRS supports multiple application frameworks and special applications. Developers can use an IGRS media application framework with various media format standards, such as AVS and MPEG-2, to develop multimedia applications. Applied among computers, consumer electronics, and communication devices, the IGRS standard can realize resource sharing and services collaboration in a certain range of wired or wireless network domain.
文摘This paper,based on Gardner's Multiple Intelligences Theory,aims to investigate whether the application of MI Theory in col lege English reading class can improve students'English reading proficiency.MI-categorized activities are adopted in the class.The paper explores college Enlgish reading teaching strategy based on MI Theory to improve English teaching proficiency.The paper sheds some light on how MI theory could be applied in EFL.
文摘Big data are regarded as a tremendous technology for processing a huge variety of data in a short time and with a large storage capacity.The user’s access over the internet creates massive data processing over the internet.Big data require an intelligent feature selection model by addressing huge varieties of data.Traditional feature selection techniques are only applicable to simple data mining.Intelligent techniques are needed in big data processing and machine learning for an efficient classification.Major feature selection algorithms read the input features as they are.Then,the features are preprocessed and classified.Here,an algorithm does not consider the relatedness.During feature selection,all features are misread as outputs.Accordingly,a less optimal solution is achieved.In our proposed research,we focus on the feature selection by using supervised learning techniques called grey wolf optimization(GWO)with decomposed random differential grouping(DrnDG-GWO).First,decomposition of features into subsets based on relatedness in variables is performed.Random differential grouping is performed using a fitness value of two variables.Now,every subset is regarded as a population in GWO techniques.The combination of supervised machine learning with swarm intelligence techniques produces best feature optimization results in this research.Once the features are optimized,we classify using advanced kNN process for accurate data classification.The result of DrnDGGWO is compared with those of the standard GWO and GWO with PSO for feature selection to compare the efficiency of the proposed algorithm.The accuracy and time complexity of the proposed algorithm are 98%and 5 s,which are better than the existing techniques.
基金the funding support from the Open Fund Project of State Key Subjects of Chinese Medicine Diagnostics,Hunan University of Chinese Medicine(No.2015ZYZD01).
文摘Goals of traditional Chinese medicine(TCM)include precision,accuracy,and recognition by clinical practice.Establishment of a diagnosis and treatment system that closely conforms to the principle-method-recipe-medicines system and derivation of an accurate diagnosis and treatment plan should be considerations of TCM.Artificial intelligence research based on computer technology is one of the effective ways to solve this problem.In the research of intelligent diagnosis path,reflecting the characteristics of the overall view and dialectical treatment of TCM such as"Combination of four diagnostic methods""overall examination""combination of disease and syndrome"and"treatment individualized to patient,season and locality"are key for successful research of artificial intelligence in TCM diagnosis or recognition by clinical practice.
文摘Human resource management is said to be the importance of spiritual, ethical, and human values that condition human behaviour. The immediate problem that it poses for a full understanding of human functioning is that the inner subjective experiences of consciousness based on human resource management. Ayurveda occupies the heights of human psychological accomplishment and could usefully call upon the insights of any of these sources to aid in addressing the problematic nature of modern-day businesses and have significant bearing on human behaviour. Manas prakrti in Ayuverda contributes to the study of personality. Tamas-Rajas-Sattva temperamental groups give rise to the framework of Space-Time-Causation when evolution starts in association with Consciousness Principle in manas prakrti. In this paper I present a methodology to analyze Temperamental groups that are found in manas prakrti by using an intelligent system. This will guide understand, instrumental values, operating values, and weak values of employees in human resource management.
文摘There are considered rule-based intelligent systems using fuzzy inference. Comparative analysis of different approaches and algorithms of making decisions on the base of fuzzy logic is given. Using of the parallel calculations can reduce the time of making decision in case of large-scale systems. Effectiveness of parallel calculations depends on the grouping of the rules and variables. Building of the graph of the dependence of the rules and the graph of dependence of the linguistic variables are suggested. On the base of the developed groups of rules and defuzzification of the linguistic variables we suggest to reduce the time of making decision and therefore to increase the effectiveness of the decision making with using of parallel calculations for each group.
文摘随着城市的进步和不断发展,智能驾驶车辆逐渐代替路段中的部分人工驾驶车辆,但在未来较长时间内人工驾驶车辆并不会被完全取代,此时出现网联车与人工驾驶车辆的混驾环境,即目前以及未来时间内我们面临的驾驶环境。网联车与人工驾驶车辆驾驶行为在路段内相互干扰,造成混合车流行驶效率低下。为减弱2种车辆间的相互作用,提出一种分离混驾环境下网联车和人工驾驶车辆的分阶段动态车道引导算法(dynamic lane guidance algorithm for separating CAVs and HDVs in mixed traffic environment,SCHME)。通过该算法分离在交叉口上游路段的混合流车辆集合,调整智能驾驶车辆的行驶路线并进行实时动态更新,在满足运动学约束收敛的条件下,人工驾驶车辆根据网联车的动态路线进行相应调整,实现在每辆车广义安全损失成本最小的情况下提高路段内混驾环境下车辆运行效率。通过MATLAB模拟车辆在进入交叉口前的车辆运行状态,结果表明,SCHME算法可在广义安全损失成本最小的情况下提高路段内平均车辆通行效率(17.29%),同时当车辆优化数组越大,车辆集合距离交叉口越远时,智能驾驶车辆渗透率越低,每辆车的道路广义安全损失成本越低。
文摘目的通过机器学习分析“舌边白涎”舌象特性,对舌象进行局部特征识别研究,探讨卷积神经网络算法在舌象识别应用中的性能。方法使用Python进行图像预处理,搭建用于舌象识别的视觉几何组16层(visual geometry group 16,VGG16)卷积神经网络模型,分析其对“舌边白涎”舌象鉴别分析的效果,并结合热力图分析“舌边白涎”典型舌象表现。结果基于PyTorch框架,进行卷积神经网络的舌象鉴别研究,VGG16及残差网络50层(residual network 50,ResNet50)模型验证准确率均较高,达到80%以上,且ResNet50模型优于VGG16模型,可为舌象识别提供一定参考。基于加权梯度类激活映射(gradient-weighted class activation mapping,Grad-CAM)技术,通过舌苔舌色差异分布的网络可视化,有助于直观进行模型评估分析。结论基于卷积神经网络模型对舌象数据库进行分析,实现“舌边白涎”舌象识别,有助于临床诊疗的客观化辅助分析,为舌诊智能化发展提供一定借鉴。