目前商业银行面临的个人信用风险问题极其复杂,如何对个人信用风险进行管理非常重要。个人信用风险建模是其中很关键的一步。利用某商业银行信用卡数据,构建信用评分模型,预测客户的违约概率。通过采用ROSE(random over sampling exampl...目前商业银行面临的个人信用风险问题极其复杂,如何对个人信用风险进行管理非常重要。个人信用风险建模是其中很关键的一步。利用某商业银行信用卡数据,构建信用评分模型,预测客户的违约概率。通过采用ROSE(random over sampling examples)方法处理类别不均衡的问题,利用Group-Lasso(AUC准则)方法进行变量选择,构建基于Logistic回归的信用评分模型。实证结果表明,该方法对样本数据进行类别不均衡处理的结果比其他模型在判别能力和预测能力上更为有效。采用该方法所构建的模型能够作为客户信用评价决策的有效依据,指导银行及其他金融机构评估顾客个人信用风险,在实际运用中具有良好的可操作性。展开更多
【目的】抑郁症分类诊断研究中,特征选择扮演了重要角色。【方法】针对现有超图正则化特征选择缺失组效应信息问题,提出基于组套索的超图正则化特征选择方法。首先,对抑郁症功能磁共振影像(functional magnetic resonance imaging,fMRI...【目的】抑郁症分类诊断研究中,特征选择扮演了重要角色。【方法】针对现有超图正则化特征选择缺失组效应信息问题,提出基于组套索的超图正则化特征选择方法。首先,对抑郁症功能磁共振影像(functional magnetic resonance imaging,fMRI)数据集进行预处理。其次,基于预处理后的功能磁共振数据,构建5个不同尺度的脑网络模型并计算拓扑属性提取特征。基于提取的特征,利用组套索方法构建超图,利用超图正则化特征选择方法进行特征选择。最后,使用支持向量机构建分类模型并评估分类性能。此外,还在UCI数据集中验证了所提方法的有效性。【结果】所提方法在5个不同节点定义模板下,均高于传统的特征选择方法。此外,在模板的节点数量相似的情况下,此方法有更高的分类诊断性能。展开更多
文摘目前商业银行面临的个人信用风险问题极其复杂,如何对个人信用风险进行管理非常重要。个人信用风险建模是其中很关键的一步。利用某商业银行信用卡数据,构建信用评分模型,预测客户的违约概率。通过采用ROSE(random over sampling examples)方法处理类别不均衡的问题,利用Group-Lasso(AUC准则)方法进行变量选择,构建基于Logistic回归的信用评分模型。实证结果表明,该方法对样本数据进行类别不均衡处理的结果比其他模型在判别能力和预测能力上更为有效。采用该方法所构建的模型能够作为客户信用评价决策的有效依据,指导银行及其他金融机构评估顾客个人信用风险,在实际运用中具有良好的可操作性。
基金supported by the National Natural Science Foundation of China(Grant No.11971291)the National Social Science Foundation of China(Grant No.19BTJ032)+1 种基金Fujian Alliance of Mathematics(Grant No.2023SXLMMS10)Scientific Research Climbing Program of Xiamen University of Technology(Grant No.XPDKT20037).
文摘【目的】抑郁症分类诊断研究中,特征选择扮演了重要角色。【方法】针对现有超图正则化特征选择缺失组效应信息问题,提出基于组套索的超图正则化特征选择方法。首先,对抑郁症功能磁共振影像(functional magnetic resonance imaging,fMRI)数据集进行预处理。其次,基于预处理后的功能磁共振数据,构建5个不同尺度的脑网络模型并计算拓扑属性提取特征。基于提取的特征,利用组套索方法构建超图,利用超图正则化特征选择方法进行特征选择。最后,使用支持向量机构建分类模型并评估分类性能。此外,还在UCI数据集中验证了所提方法的有效性。【结果】所提方法在5个不同节点定义模板下,均高于传统的特征选择方法。此外,在模板的节点数量相似的情况下,此方法有更高的分类诊断性能。