期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A novel improved teaching and learning-based-optimization algorithm and its application in a large-scale inventory control system
1
作者 Zhixiang Chen 《International Journal of Intelligent Computing and Cybernetics》 EI 2023年第3期443-501,共59页
Purpose–The purpose of this paper is to propose a novel improved teaching and learning-based algorithm(TLBO)to enhance its convergence ability and solution accuracy,making it more suitable for solving large-scale opt... Purpose–The purpose of this paper is to propose a novel improved teaching and learning-based algorithm(TLBO)to enhance its convergence ability and solution accuracy,making it more suitable for solving large-scale optimization issues.Design/methodology/approach–Utilizing multiple cooperation mechanisms in teaching and learning processes,an improved TBLO named CTLBO(collectivism teaching-learning-based optimization)is developed.This algorithm introduces a new preparation phase before the teaching and learning phases and applies multiple teacher–learner cooperation strategies in teaching and learning processes.Applying modularizationidea,based on the configuration structure of operators ofCTLBO,six variants ofCTLBOare constructed.Foridentifying the best configuration,30 general benchmark functions are tested.Then,three experiments using CEC2020(2020 IEEE Conference on Evolutionary Computation)-constrained optimization problems are conducted to compare CTLBO with other algorithms.At last,a large-scale industrial engineering problem is taken as the application case.Findings–Experiment with 30 general unconstrained benchmark functions indicates that CTLBO-c is the best configuration of all variants of CTLBO.Three experiments using CEC2020-constrained optimization problems show that CTLBO is one powerful algorithm for solving large-scale constrained optimization problems.The application case of industrial engineering problem shows that CTLBO and its variant CTLBO-c can effectively solve the large-scale real problem,while the accuracies of TLBO and other meta-heuristic algorithm are far lower than CLTBO and CTLBO-c,revealing that CTLBO and its variants can far outperform other algorithms.CTLBO is an excellent algorithm for solving large-scale complex optimization issues.Originality/value–The innovation of this paper lies in the improvement strategies in changing the original TLBO with two-phase teaching–learning mechanism to a new algorithm CTLBO with three-phase multiple cooperation teaching–learning mechanism,self-learning mechanism in teaching and group teaching mechanism.CTLBO has important application value in solving large-scale optimization problems. 展开更多
关键词 Teaching and learning-based optimization group-individual multi-mode cooperation Performance-based group teaching Teacher self-learning Team learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部