大规模风电的随机性和间歇性导致基于典型方式计算的通道极限输电能力(total transfer capability,TTC)有效性降低。提出一种TTC非参数回归估计技术,通过风电与负荷场景聚类形成代表性中心,采用二分法重复潮流计算各场景下含稳定约束的...大规模风电的随机性和间歇性导致基于典型方式计算的通道极限输电能力(total transfer capability,TTC)有效性降低。提出一种TTC非参数回归估计技术,通过风电与负荷场景聚类形成代表性中心,采用二分法重复潮流计算各场景下含稳定约束的断面TTC值,提取各场景与所属中心场景间的属性偏差及TTC偏差作为特征数据样本,经过相关性检验与非参独立筛选后,利用基于三次B样条函数展开的Group Lasso算法对TTC偏差进行非参数回归估计。算例验证表明,该方法具备较强的非线性泛化能力,能以较高精度提取输电断面TTC运行规则的显性表达式,与传统方法相比具有更丰富的信息输出与更良好的解释性,可用于含风电外送断面电力系统TTC的在线快速估计。展开更多
文摘大规模风电的随机性和间歇性导致基于典型方式计算的通道极限输电能力(total transfer capability,TTC)有效性降低。提出一种TTC非参数回归估计技术,通过风电与负荷场景聚类形成代表性中心,采用二分法重复潮流计算各场景下含稳定约束的断面TTC值,提取各场景与所属中心场景间的属性偏差及TTC偏差作为特征数据样本,经过相关性检验与非参独立筛选后,利用基于三次B样条函数展开的Group Lasso算法对TTC偏差进行非参数回归估计。算例验证表明,该方法具备较强的非线性泛化能力,能以较高精度提取输电断面TTC运行规则的显性表达式,与传统方法相比具有更丰富的信息输出与更良好的解释性,可用于含风电外送断面电力系统TTC的在线快速估计。