Nowadays, because of its wide bandwidth and high communication capability, the optical fiber is more and more used for high data rate transmission of information in railway environments. Conventionally, only one servi...Nowadays, because of its wide bandwidth and high communication capability, the optical fiber is more and more used for high data rate transmission of information in railway environments. Conventionally, only one service is sent over the fiber at a time. However, many different services can be simultaneously conveyed in railway stations such as passenger information service, cellular phone, Wi-Fi... The objective of the work proposed in this paper is to demonstrate the potential benefits of transmitting radio signals over fiber in a railway environment. The main idea is to exploit the full capacity of the fiber by transmitting multiple services using the same fiber. Since, different services are operating in different frequency bands; we propose a new multiplexing technique called Mode Group Diversity Multiplexing (MGDM) to ensure the transmission of multiple services using the same fiber, without additional infrastructure. There are numerous advantages of the proposed technique, e.g., faster and reliable data exchange, high resolution video surveillance capability, high data rate information exchange in railway stations. We present, in this paper, the physical characteristics of optical fibers, performance of MGDM multiplexing technique, and the influence of the laser excitation conditions at the entrance of the fiber on the performances of the system.展开更多
For the stratified shallow water with a lossy bottom, the distribution and asymptotic behavior of mode eigenvalues in the complex plane are discussed on the basis of the Pekeris cut. The analysis shows that even in th...For the stratified shallow water with a lossy bottom, the distribution and asymptotic behavior of mode eigenvalues in the complex plane are discussed on the basis of the Pekeris cut. The analysis shows that even in the shallow water with a low-speed lossy bottom there may be the proper modes which satisfy the radiation condition at infinite depth. It is also shown that when the ratio between the densities of the seawater and seabottom is close to one, there exist only a finite number of improper modes . An iterative method for evaluating the complex eigenvalues and group velocities of normal modes is presented and some numerical results are given.展开更多
文摘Nowadays, because of its wide bandwidth and high communication capability, the optical fiber is more and more used for high data rate transmission of information in railway environments. Conventionally, only one service is sent over the fiber at a time. However, many different services can be simultaneously conveyed in railway stations such as passenger information service, cellular phone, Wi-Fi... The objective of the work proposed in this paper is to demonstrate the potential benefits of transmitting radio signals over fiber in a railway environment. The main idea is to exploit the full capacity of the fiber by transmitting multiple services using the same fiber. Since, different services are operating in different frequency bands; we propose a new multiplexing technique called Mode Group Diversity Multiplexing (MGDM) to ensure the transmission of multiple services using the same fiber, without additional infrastructure. There are numerous advantages of the proposed technique, e.g., faster and reliable data exchange, high resolution video surveillance capability, high data rate information exchange in railway stations. We present, in this paper, the physical characteristics of optical fibers, performance of MGDM multiplexing technique, and the influence of the laser excitation conditions at the entrance of the fiber on the performances of the system.
文摘For the stratified shallow water with a lossy bottom, the distribution and asymptotic behavior of mode eigenvalues in the complex plane are discussed on the basis of the Pekeris cut. The analysis shows that even in the shallow water with a low-speed lossy bottom there may be the proper modes which satisfy the radiation condition at infinite depth. It is also shown that when the ratio between the densities of the seawater and seabottom is close to one, there exist only a finite number of improper modes . An iterative method for evaluating the complex eigenvalues and group velocities of normal modes is presented and some numerical results are given.