A backward wave amplifier(BWA) in a terahertz regime with a novel slow-wave structure(SWS) composed of multi parallel grating pins inside a rectangular waveguide is analyzed. The multi-pin rectangular waveguide SW...A backward wave amplifier(BWA) in a terahertz regime with a novel slow-wave structure(SWS) composed of multi parallel grating pins inside a rectangular waveguide is analyzed. The multi-pin rectangular waveguide SWS possesses good performance and is compatible with micro-fabrication technologies. The dispersion and interaction impedance of the multipin SWS are presented. The stopbands of the modes cling together in a Brillouim zone. The SWS has a high interaction impedance that is suitable for the interaction of multi cylindrical beams. The design, which is based on three parallel pins supporting the wave–beam interaction with four cylindrical beams, is verified by three-dimensional particle-in-cell simulations. A BWA with the central frequency at 340 GHz is demonstrated, and the output power is more than 100 mW.A tuning frequency range of 15 GHz(333–348 GHz) is obtained with a gain of more than 20 dB.展开更多
A novel slotted helix slow-wave structure (SWS) is proposed to develop a high power, wide-bandwidth, and high reliability millimeter-wave traveling-wave tube (TWT). This novel structure, which has higher heat capa...A novel slotted helix slow-wave structure (SWS) is proposed to develop a high power, wide-bandwidth, and high reliability millimeter-wave traveling-wave tube (TWT). This novel structure, which has higher heat capacity than a conven- tional helix SWS, evolves from conventional helix SWS with three parallel rows of rectangular slots made in the outside of the helix tape. In this paper, the electromagnetic characteristics and the beam-wave interaction of this novel structure operating in the Ka-band are investigated. From our calculations, when the designed beam voltage and beam current are set to be 18.45 kV and 0.2 A, respectively, this novel circuit can produce over 700-W average output power in a frequency range from 27.5 GHz to 32.5 GHz, and the corresponding conversion efficiency values vary from 19% to 21.3%, and the maximum output power is 787 W at 30 GHz.展开更多
A watt-class backward wave oscillator is proposed, using the concise sine waveguide slow-wave structure combined with a pencil electron beam to operate at 220 GHz. Firstly, the dispersion curve of the sine waveguide i...A watt-class backward wave oscillator is proposed, using the concise sine waveguide slow-wave structure combined with a pencil electron beam to operate at 220 GHz. Firstly, the dispersion curve of the sine waveguide is calculated, then, the oscillation frequency and operating voltage of the device are predicted and the circuit transmission loss is calculated. Finally, the particle-in-cell simulation method is used to forecast its radiation performance. The results show that this novel backward wave oscillator can produce over 1-W continuous wave power output in a frequency range from 210 GHz to 230 GHz. Therefore, it will be considered as a very promising high-power millimeter-wave to terahertz-wave radiation source.展开更多
The variational method is applied to calculate the dispersion characteristics of disc-loaded waveguide slow-wave structures. The parameters describing the waveguide discontinuities in disc-loaded waveguide are calcula...The variational method is applied to calculate the dispersion characteristics of disc-loaded waveguide slow-wave structures. The parameters describing the waveguide discontinuities in disc-loaded waveguide are calculated by the variational method. Then the dispersion characteristics of slow-wave structures are obtained using lossless microwave quadrupole theory. Good agreement was observed between results of the Variational method and those of field matching method and high frequency structure simulator. In the case of broad band, results of the variational method are better than those of field matching method.展开更多
This paper investigates the properties of traveling wave-beam interaction in a rectangular helix traveling-wave-tube (TWT) for a solid sheet electron beam. The "hot" dispersion equation is obtained by means of the...This paper investigates the properties of traveling wave-beam interaction in a rectangular helix traveling-wave-tube (TWT) for a solid sheet electron beam. The "hot" dispersion equation is obtained by means of the self-consistent field theory. The small signal analysis,which includes the effects of the beam parameters and slow-wave structure (SWS) parameters,is carried out by theoretical computation. The numerical results show that the bandwidth and the small-signal gain of the rectangular helix TWT increase as the beam current increases;and the beam voltage not obviously influences the small signal gain. Among different rectangular helix structures,the small-signal gain increases as the width of the rectangular helix SWS increases,however,the bandwidth decreases whether structure parameters a and L or ψ and L are fixed or not.In addition,a comparison of the small-signal gain of this structure with a conventional round helix is made.The presented analysis will be useful for the design of the TWT with a rectangular helix circuit.展开更多
The folded double-ridged waveguide structure is presented and its properties used for wide-band traveling-wave tube are investigated. Expressions of dispersion characteristics, normalized phase velocity and interactio...The folded double-ridged waveguide structure is presented and its properties used for wide-band traveling-wave tube are investigated. Expressions of dispersion characteristics, normalized phase velocity and interaction impedance of this structure are derived and numerically calculated. The calculated results using our theory agree well with those obtained by using the 3D electromagnetic simulation software HFSS. Influences of the ridge-loaded area and broad-wall dimensions on the high frequency characteristics of the novel slow-wave structure are discussed. It is shown that the folded double-ridged waveguide structure has a much wider relative passband than the folded waveguide slow-wave structure and a relative passband of 67% could be obtained, indicating that this structure can operate in broad-band frequency ranges of beam-wave interaction. The small signal gain property is investigated for ensuring the improvement of bandwidth. Meanwhile, with comparable dispersion characteristics, the transverse section dimension of this novel structure is much smaller than that of conventional one, which indicates an available way to reduce the weight of traveling-wave tube.展开更多
This paper studies the dispersion characteristics of a modified photonic band-gap slow-wave structure with an open boundary by simulation and experiment. A mode launcher with a wheel radiator and a coupling probe is p...This paper studies the dispersion characteristics of a modified photonic band-gap slow-wave structure with an open boundary by simulation and experiment. A mode launcher with a wheel radiator and a coupling probe is presented to excite a pure TM01-like mode. The cold test and simulation results show that the TM01-like mode is effectively excited and no parasitic modes appear. The dispersion characteristics obtained from the cold test are in good agreement with the calculated results.展开更多
A three-dimensional model of the double-slot coupled cavity slow-wave structure (CCSWS) with a solid round elec- tron beam for the beam-wave interaction is presented. Based on the "cold" dispersion, the "hot" di...A three-dimensional model of the double-slot coupled cavity slow-wave structure (CCSWS) with a solid round elec- tron beam for the beam-wave interaction is presented. Based on the "cold" dispersion, the "hot" dispersion equation is derived with the Maxwell equations by using the variable separation method and the field-matching method. Through numerical calculations, the effects of the electron beam parameters and the staggered angle between adjacent walls on the linear gain are analyzed.展开更多
An all-metal slow-wave structure, coaxial-radial line, which is suitable for application in broadband high power traveling wave tube (TWT) and relativistic TWT as a RF system is introduced. Making use of the field mat...An all-metal slow-wave structure, coaxial-radial line, which is suitable for application in broadband high power traveling wave tube (TWT) and relativistic TWT as a RF system is introduced. Making use of the field matching method and variational method together with the orthogonality of the Bessel function and the Floquet Theroem for the periodic system, the dispersion characteristic expression is derived. This equation is more rigorous than that of precious reports.展开更多
The re-entrant double-staggered ladder slow-wave structure is employed in a high-power V-band coupled-cavity traveling-wave tube. This structure has a wide bandwidth, a moderate interaction impedance, and excellent th...The re-entrant double-staggered ladder slow-wave structure is employed in a high-power V-band coupled-cavity traveling-wave tube. This structure has a wide bandwidth, a moderate interaction impedance, and excellent thermal dissipation properties, as well as easy fabrication. A well-matched waveguide coupler is proposed for the structure. Combining the design of attenuators, a full-scale three-dimensional circuit model for the V-band coupled-cavity traveling- wave tube is constructed. The electromagnetic characteristics and the beam wave interaction of this structure are investigated. The beam current is set to be 100 mA, and the cathode voltage is tuned from 16.8 kV to 15.8 kV. The calculation results show that this tube can produce a saturated average output power over 100 W with an instantaneous bandwidth greater than 1.25 GHz in the frequency ranging from 58 GHz to 62 GHz. The corresponding gain and electronic efficiency can reach over 32 dB and 6.5%, respectively.展开更多
The study on a miniaturized, low-voltage, wide-bandwidth, high-efficiency modified V-shaped microstrip meander-line slow-wave structure is presented. This structure is evolved from the original U-shaped microstrip mea...The study on a miniaturized, low-voltage, wide-bandwidth, high-efficiency modified V-shaped microstrip meander-line slow-wave structure is presented. This structure is evolved from the original U-shaped microstrip meander-line slow-wave structure, combining the advantages of a traditional microstrip and a rectangular helix. In this paper, simulations of the electromagnetic characteristics and the beam-wave interaction of this structure are carried out. Our study shows that when the design voltage and the current of a sheet electron beam are set to be 4700 V and 100 mA, respectively, this miniature millimeter-wave power amplifier is capable of delivering 160-W output power with a corresponding gain of 37.3 dB and a maximum interaction efficiency of 34% at 97 GHz.展开更多
An open-styled dielectric-lined azimuthMly periodic circular waveguide (ODLAP-CW) for a millimeter-wave traveling-wave tube (TWT) is proposed, which is a modified form of a dielectric-lined azimuthally periodic ci...An open-styled dielectric-lined azimuthMly periodic circular waveguide (ODLAP-CW) for a millimeter-wave traveling-wave tube (TWT) is proposed, which is a modified form of a dielectric-lined azimuthally periodic circular waveguide (DLAP-CW). The slow-wave characteristics of the open-styled DLAP-CW are studied by using the spatial harmonics method, which includes normalized phase velocity and interaction impedance. The complicated dispersion equations are numerically solved with MATLAB and the results are in good agreement with the simulation results obtained from HFSS. The influence of structural parameters on the RF properties is investigated based on our theory. The numerical results show that the optimal thickness of the metal rod can increase the interaction impedance, with the dielectric constant held fixed. Finally, the slow-wave characteristics and transmission properties of an open-styled structure are compared with those of the DLAP-CW. The results validate that the mode competition is eliminated in the improved structure with only a slight influence on the dispersion characteristics, which may significantly improve the stability of an open-styled DLAP-CW-based TWT, and the interaction efficiency is also improved.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2014CB339801)the National High Technology Research and Development Program of China(Grant No.G060104012AA8122007B)
文摘A backward wave amplifier(BWA) in a terahertz regime with a novel slow-wave structure(SWS) composed of multi parallel grating pins inside a rectangular waveguide is analyzed. The multi-pin rectangular waveguide SWS possesses good performance and is compatible with micro-fabrication technologies. The dispersion and interaction impedance of the multipin SWS are presented. The stopbands of the modes cling together in a Brillouim zone. The SWS has a high interaction impedance that is suitable for the interaction of multi cylindrical beams. The design, which is based on three parallel pins supporting the wave–beam interaction with four cylindrical beams, is verified by three-dimensional particle-in-cell simulations. A BWA with the central frequency at 340 GHz is demonstrated, and the output power is more than 100 mW.A tuning frequency range of 15 GHz(333–348 GHz) is obtained with a gain of more than 20 dB.
基金Project supported by the National Natural Science Foundation of China(Grant No.61271029)the Natural Science Key Laboratory Foundationthe Natural Science Fund for Distinguished Young Scholars of China(Grant No.61125103)
文摘A novel slotted helix slow-wave structure (SWS) is proposed to develop a high power, wide-bandwidth, and high reliability millimeter-wave traveling-wave tube (TWT). This novel structure, which has higher heat capacity than a conven- tional helix SWS, evolves from conventional helix SWS with three parallel rows of rectangular slots made in the outside of the helix tape. In this paper, the electromagnetic characteristics and the beam-wave interaction of this novel structure operating in the Ka-band are investigated. From our calculations, when the designed beam voltage and beam current are set to be 18.45 kV and 0.2 A, respectively, this novel circuit can produce over 700-W average output power in a frequency range from 27.5 GHz to 32.5 GHz, and the corresponding conversion efficiency values vary from 19% to 21.3%, and the maximum output power is 787 W at 30 GHz.
基金Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 61125103)the National Natural Science Foundation of China (Grant Nos. 60971038 and 60971031)the Fundamental Research Funds for the Central Universities,China (Grant No. ZYGX2009Z003)
文摘A watt-class backward wave oscillator is proposed, using the concise sine waveguide slow-wave structure combined with a pencil electron beam to operate at 220 GHz. Firstly, the dispersion curve of the sine waveguide is calculated, then, the oscillation frequency and operating voltage of the device are predicted and the circuit transmission loss is calculated. Finally, the particle-in-cell simulation method is used to forecast its radiation performance. The results show that this novel backward wave oscillator can produce over 1-W continuous wave power output in a frequency range from 210 GHz to 230 GHz. Therefore, it will be considered as a very promising high-power millimeter-wave to terahertz-wave radiation source.
文摘The variational method is applied to calculate the dispersion characteristics of disc-loaded waveguide slow-wave structures. The parameters describing the waveguide discontinuities in disc-loaded waveguide are calculated by the variational method. Then the dispersion characteristics of slow-wave structures are obtained using lossless microwave quadrupole theory. Good agreement was observed between results of the Variational method and those of field matching method and high frequency structure simulator. In the case of broad band, results of the variational method are better than those of field matching method.
基金Project supported in part by the National Natural Science Foundation of China (Grant No 60532010)the Talent Fund of Chinese Education Administration
文摘This paper investigates the properties of traveling wave-beam interaction in a rectangular helix traveling-wave-tube (TWT) for a solid sheet electron beam. The "hot" dispersion equation is obtained by means of the self-consistent field theory. The small signal analysis,which includes the effects of the beam parameters and slow-wave structure (SWS) parameters,is carried out by theoretical computation. The numerical results show that the bandwidth and the small-signal gain of the rectangular helix TWT increase as the beam current increases;and the beam voltage not obviously influences the small signal gain. Among different rectangular helix structures,the small-signal gain increases as the width of the rectangular helix SWS increases,however,the bandwidth decreases whether structure parameters a and L or ψ and L are fixed or not.In addition,a comparison of the small-signal gain of this structure with a conventional round helix is made.The presented analysis will be useful for the design of the TWT with a rectangular helix circuit.
基金Project supported in part by the National Natural Science Foundation of China (Grant No. 60971038)in part by the Fundamental Research Funds for Central Universities,China (Grant No. ZYGX2009Z003)
文摘The folded double-ridged waveguide structure is presented and its properties used for wide-band traveling-wave tube are investigated. Expressions of dispersion characteristics, normalized phase velocity and interaction impedance of this structure are derived and numerically calculated. The calculated results using our theory agree well with those obtained by using the 3D electromagnetic simulation software HFSS. Influences of the ridge-loaded area and broad-wall dimensions on the high frequency characteristics of the novel slow-wave structure are discussed. It is shown that the folded double-ridged waveguide structure has a much wider relative passband than the folded waveguide slow-wave structure and a relative passband of 67% could be obtained, indicating that this structure can operate in broad-band frequency ranges of beam-wave interaction. The small signal gain property is investigated for ensuring the improvement of bandwidth. Meanwhile, with comparable dispersion characteristics, the transverse section dimension of this novel structure is much smaller than that of conventional one, which indicates an available way to reduce the weight of traveling-wave tube.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10975036 and 61071018)the Guangxi Natural Science Foundation,China (Grant No. 2010GXNSFB013049)
文摘This paper studies the dispersion characteristics of a modified photonic band-gap slow-wave structure with an open boundary by simulation and experiment. A mode launcher with a wheel radiator and a coupling probe is presented to excite a pure TM01-like mode. The cold test and simulation results show that the TM01-like mode is effectively excited and no parasitic modes appear. The dispersion characteristics obtained from the cold test are in good agreement with the calculated results.
基金Project supported by the National Natural Science Foundation of China(Grant No.11205162)
文摘A three-dimensional model of the double-slot coupled cavity slow-wave structure (CCSWS) with a solid round elec- tron beam for the beam-wave interaction is presented. Based on the "cold" dispersion, the "hot" dispersion equation is derived with the Maxwell equations by using the variable separation method and the field-matching method. Through numerical calculations, the effects of the electron beam parameters and the staggered angle between adjacent walls on the linear gain are analyzed.
基金Supported by the Fund of National Key Laboratory (No.51440020101DZ7604)
文摘An all-metal slow-wave structure, coaxial-radial line, which is suitable for application in broadband high power traveling wave tube (TWT) and relativistic TWT as a RF system is introduced. Making use of the field matching method and variational method together with the orthogonality of the Bessel function and the Floquet Theroem for the periodic system, the dispersion characteristic expression is derived. This equation is more rigorous than that of precious reports.
基金Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 61125103)the Vacuum Electronics National Lab Foundation, China (Grant No. 9140C050101110C0501)the Fundamental Research Funds for the Central Universities, China (Grant Nos. ZYGX2009Z003 and ZYGX2010J054)
文摘The re-entrant double-staggered ladder slow-wave structure is employed in a high-power V-band coupled-cavity traveling-wave tube. This structure has a wide bandwidth, a moderate interaction impedance, and excellent thermal dissipation properties, as well as easy fabrication. A well-matched waveguide coupler is proposed for the structure. Combining the design of attenuators, a full-scale three-dimensional circuit model for the V-band coupled-cavity traveling- wave tube is constructed. The electromagnetic characteristics and the beam wave interaction of this structure are investigated. The beam current is set to be 100 mA, and the cathode voltage is tuned from 16.8 kV to 15.8 kV. The calculation results show that this tube can produce a saturated average output power over 100 W with an instantaneous bandwidth greater than 1.25 GHz in the frequency ranging from 58 GHz to 62 GHz. The corresponding gain and electronic efficiency can reach over 32 dB and 6.5%, respectively.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60971038)the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2009Z003)
文摘The study on a miniaturized, low-voltage, wide-bandwidth, high-efficiency modified V-shaped microstrip meander-line slow-wave structure is presented. This structure is evolved from the original U-shaped microstrip meander-line slow-wave structure, combining the advantages of a traditional microstrip and a rectangular helix. In this paper, simulations of the electromagnetic characteristics and the beam-wave interaction of this structure are carried out. Our study shows that when the design voltage and the current of a sheet electron beam are set to be 4700 V and 100 mA, respectively, this miniature millimeter-wave power amplifier is capable of delivering 160-W output power with a corresponding gain of 37.3 dB and a maximum interaction efficiency of 34% at 97 GHz.
基金supported by the National Natural Science Foundation of China (Grant No. 60971038)the Fundamental Research Funds for the Central Universities, China (Grant Nos. ZYGX2009Z003 and ZYGX2010J054)
文摘An open-styled dielectric-lined azimuthMly periodic circular waveguide (ODLAP-CW) for a millimeter-wave traveling-wave tube (TWT) is proposed, which is a modified form of a dielectric-lined azimuthally periodic circular waveguide (DLAP-CW). The slow-wave characteristics of the open-styled DLAP-CW are studied by using the spatial harmonics method, which includes normalized phase velocity and interaction impedance. The complicated dispersion equations are numerically solved with MATLAB and the results are in good agreement with the simulation results obtained from HFSS. The influence of structural parameters on the RF properties is investigated based on our theory. The numerical results show that the optimal thickness of the metal rod can increase the interaction impedance, with the dielectric constant held fixed. Finally, the slow-wave characteristics and transmission properties of an open-styled structure are compared with those of the DLAP-CW. The results validate that the mode competition is eliminated in the improved structure with only a slight influence on the dispersion characteristics, which may significantly improve the stability of an open-styled DLAP-CW-based TWT, and the interaction efficiency is also improved.