期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Intrusion Detection Method Based on Improved Growing Hierarchical Self-Organizing Map 被引量:2
1
作者 张亚平 布文秀 +2 位作者 苏畅 王璐瑶 许涵 《Transactions of Tianjin University》 EI CAS 2016年第4期334-338,共5页
Considering that growing hierarchical self-organizing map(GHSOM) ignores the influence of individual component in sample vector analysis, and its accurate rate in detecting unknown network attacks is relatively lower,... Considering that growing hierarchical self-organizing map(GHSOM) ignores the influence of individual component in sample vector analysis, and its accurate rate in detecting unknown network attacks is relatively lower, an improved GHSOM method combined with mutual information is proposed. After theoretical analysis, experiments are conducted to illustrate the effectiveness of the proposed method by accurately clustering the input data. Based on different clusters, the complex relationship within the data can be revealed effectively. 展开更多
关键词 growing hierarchical self-organizing map(GHSOM) hierarchical structure mutual information intrusion detection network security
下载PDF
基于自组织可增长映射的移动机器人仿生定位算法研究 被引量:7
2
作者 陈孟元 徐明辉 《电子与信息学报》 EI CSCD 北大核心 2021年第4期1003-1013,共11页
为提高移动机器人在同步定位和地图构建(SLAM)中的定位精度,该文提出一种基于自组织可增长映射(GSOM)的仿生定位算法。该方法将位置细胞的激活特性和神经网络输出层神经元建立响应连接,通过GSOM神经网络构建空间的拓扑地图,利用感知距... 为提高移动机器人在同步定位和地图构建(SLAM)中的定位精度,该文提出一种基于自组织可增长映射(GSOM)的仿生定位算法。该方法将位置细胞的激活特性和神经网络输出层神经元建立响应连接,通过GSOM神经网络构建空间的拓扑地图,利用感知距离信息实现位置细胞的激活响应从而估计机器人位置,以此还原机器人的运行路径。实验结果表明细胞间隔R对定位精度有较大影响,选取合适的细胞间隔能有效地减少神经网络的学习时间,提高定位精度,该文算法平均误差在0.153 m以内,定位精度达到90.243%,均优于原有算法。经验证该文算法建立的模型能够实现机器人的空间位置表征,提高了机器人在实验场景下的定位精度,表现出良好的位置估计性能。 展开更多
关键词 移动机器人 自组织可增长映射 位置细胞 位置表征 定位精度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部