The rubber tree physiological and ecological process quantitatively described by using mathematical method is an important means to the analysis of rubber tree growth process and mechanism. The study on growth simulat...The rubber tree physiological and ecological process quantitatively described by using mathematical method is an important means to the analysis of rubber tree growth process and mechanism. The study on growth simulation model of rubber tree will lay the foundation for the application of rubber tree cultivation intelligent decision system. A Richards equation was formulated to describe the height and stem diameter growth dynamics of the annual rubber seedlings. An area correlation analysis was done according to the closeness of the observed parameters to the dynamic curve on the gray system composed of the seedling growth increment and the meteorological factors including aerial temperature, precipitation and solar radiation hours that influence upon the seedling growth. The results showed that rubber seedling response fitted the Richards equation quite well. The growth increment displayed a distinct alternation of 'slow—fast—slow— fast—slow' rhythm. The growth course of the seedlings might be partitioned into three periods of time by the sequential clustering analysis, namely pre-growing, fast-growing, late-growing stage. The tray correlation analysis revealed that air temperature had the most significant influence while precipitation had the least impact on height growth of the rubber seedlings. In conclusion, the air temperature had the most significant influence while solar radiation hours had the least impact on stem diameter growth of the rubber seedlings.展开更多
文摘The rubber tree physiological and ecological process quantitatively described by using mathematical method is an important means to the analysis of rubber tree growth process and mechanism. The study on growth simulation model of rubber tree will lay the foundation for the application of rubber tree cultivation intelligent decision system. A Richards equation was formulated to describe the height and stem diameter growth dynamics of the annual rubber seedlings. An area correlation analysis was done according to the closeness of the observed parameters to the dynamic curve on the gray system composed of the seedling growth increment and the meteorological factors including aerial temperature, precipitation and solar radiation hours that influence upon the seedling growth. The results showed that rubber seedling response fitted the Richards equation quite well. The growth increment displayed a distinct alternation of 'slow—fast—slow— fast—slow' rhythm. The growth course of the seedlings might be partitioned into three periods of time by the sequential clustering analysis, namely pre-growing, fast-growing, late-growing stage. The tray correlation analysis revealed that air temperature had the most significant influence while precipitation had the least impact on height growth of the rubber seedlings. In conclusion, the air temperature had the most significant influence while solar radiation hours had the least impact on stem diameter growth of the rubber seedlings.