AIM:To characterize the regeneration-associated stem cell-related phenotype of hepatocyte-derived growth factor receptor(HGFR)-expressing cells in active ulcerative colitis(UC).METHODS:On the whole 38 peripheral blood...AIM:To characterize the regeneration-associated stem cell-related phenotype of hepatocyte-derived growth factor receptor(HGFR)-expressing cells in active ulcerative colitis(UC).METHODS:On the whole 38 peripheral blood samples and 38 colonic biopsy samples from 18 patients with histologically proven active UC and 20 healthy control subjects were collected.After preparing tissue microarrays and blood smears HGFR,caudal type homeobox 2(CDX2),prominin-1(CD133) and Musashi-1conventional and double fluorescent immunolabelings were performed.Immunostained samples were digitalized using high-resolution Mirax Desk instrument,and analyzed with the Mirax TMA Module software.For semiquantitative counting of immunopositive lamina propria(LP) cells 5 fields of view were counted at magnification x 200 in each sample core,then mean ± SD were determined.In case of peripheral blood smears,30 fields of view with 100 μm diameter were evaluated in every sample and the number of immunopositive cells(mean ± SD) was determined.Using 337 nm UVA Laser MicroDissection system at least 5000 subepithelial cells from the lamina propria were collected.Gene expression analysis of HGFR,CDX2,CD133,leucine-rich repeat-containing G-protein coupled receptor 5(Lgr5),Musashi-1 and cytokeratin20(CK20) were performed in both laser-microdisscted samples and blood samples by using real time reverse transcription polymerase chain reaction(RT-PCR).RESULTS:By performing conventional and double fluorescent immunolabelings confirmed by RT-PCR,higher number of HGFR(blood:6.7 ± 1.22 vs 38.5 ±3.18;LP:2.25 ± 0.85 vs 9.22 ± 0.65;P < 0.05),CDX2(blood:0 vs 0.94 ± 0.64;LP:0.75 ± 0.55 vs 2.11± 0.75;P < 0.05),CD133(blood:1.1 ± 0.72 vs 8.3± 1.08;LP:11.1 ± 0.85 vs 26.28 ± 1.71;P < 0.05)and Musashi-1(blood and LP:0 vs scattered) positive cells were detected in blood and lamina propria of UC samples as compared to controls.HGFR/CDX2(blood:0 vs 1± 0.59;LP:0.8 ± 0.69 vs 2.06 ± 0.72,P < 0.05)and Musashi-1/CDX2(blood and LP:0 vs scattered) coexpressions were found in blood and lamina propria of UC samples.HGFR/CD133 and CD133/CDX2 coexpressions appeared only in UC lamina propria samples.CDX2,Lgr5 and Musashi-1 expressions in UC blood samples were not accompanied by CK20 mRNA expression.CONCLUSION:In active UC,a portion of circulating HGFR-expressing cells are committed to the epithelial lineage,and may participate in mucosal regeneration by undergoing mesenchymal-to-epithelial transition.展开更多
Epidemiological studies have shown a high prevalence of low serum testosterone levels in men with cardiovascular disease. Moreover, the tyrosine kinase receptor Axl, the ligand of which is growth arrest-specific prote...Epidemiological studies have shown a high prevalence of low serum testosterone levels in men with cardiovascular disease. Moreover, the tyrosine kinase receptor Axl, the ligand of which is growth arrest-specific protein 6 (GAS6), is expressed in the vasculature, and serum GAS6 levels are associated with endothelial dysfunction and cardiovascular events. Testosterone regulates GAS6 gene transcription directly, which inhibits calcification of vascular smooth muscle cells and provides a mechanistic insight into the cardioprotective action of androgens. This study was designed to determine the correlation between serum GAS6 and testosterone levels in male patients with coronary heart disease (CHD). We recruited 225 patients with CHD and 102 apparently healthy controls, Serum concentrations of GAS6 and soluble Axl were quantified by an enzyme-linked immunosorbent assay. Levels of high-sensitivity C-reactive protein, testosterone, estradiol, and other routine biochemical markers were also measured. Testosterone decreased from 432.69 ± 14.40 to 300.76± 6.23 ng d1-1 (P 〈 0.001) and GAS6 decreased from 16.20± 0.31 to 12.51 ± 0.19 ng ml-1 (P 〈 0.001) in patients with CHD, compared with control subjects. Multiple linear regression analysis showed that serum testosterone and GAS6 levels were positively associated in male patients with CHD. Alterations in GAS6 levels may influence the development of CHD. Downregulation of GAS6/Axl signaling in the presence of low sex hormone levels during disease progression is a potential mechanism by which GAS6 affects CHD. This study provides novel results regarding the influence of sex hormones on serum GAS6 levels in patients with CHD.展开更多
基金Cell Analysis Laboratory, 2nd Department of Internal Medicine, and the 1st Department of Pathology and Experimental Oncology, Semmelweis University for their technical support
文摘AIM:To characterize the regeneration-associated stem cell-related phenotype of hepatocyte-derived growth factor receptor(HGFR)-expressing cells in active ulcerative colitis(UC).METHODS:On the whole 38 peripheral blood samples and 38 colonic biopsy samples from 18 patients with histologically proven active UC and 20 healthy control subjects were collected.After preparing tissue microarrays and blood smears HGFR,caudal type homeobox 2(CDX2),prominin-1(CD133) and Musashi-1conventional and double fluorescent immunolabelings were performed.Immunostained samples were digitalized using high-resolution Mirax Desk instrument,and analyzed with the Mirax TMA Module software.For semiquantitative counting of immunopositive lamina propria(LP) cells 5 fields of view were counted at magnification x 200 in each sample core,then mean ± SD were determined.In case of peripheral blood smears,30 fields of view with 100 μm diameter were evaluated in every sample and the number of immunopositive cells(mean ± SD) was determined.Using 337 nm UVA Laser MicroDissection system at least 5000 subepithelial cells from the lamina propria were collected.Gene expression analysis of HGFR,CDX2,CD133,leucine-rich repeat-containing G-protein coupled receptor 5(Lgr5),Musashi-1 and cytokeratin20(CK20) were performed in both laser-microdisscted samples and blood samples by using real time reverse transcription polymerase chain reaction(RT-PCR).RESULTS:By performing conventional and double fluorescent immunolabelings confirmed by RT-PCR,higher number of HGFR(blood:6.7 ± 1.22 vs 38.5 ±3.18;LP:2.25 ± 0.85 vs 9.22 ± 0.65;P < 0.05),CDX2(blood:0 vs 0.94 ± 0.64;LP:0.75 ± 0.55 vs 2.11± 0.75;P < 0.05),CD133(blood:1.1 ± 0.72 vs 8.3± 1.08;LP:11.1 ± 0.85 vs 26.28 ± 1.71;P < 0.05)and Musashi-1(blood and LP:0 vs scattered) positive cells were detected in blood and lamina propria of UC samples as compared to controls.HGFR/CDX2(blood:0 vs 1± 0.59;LP:0.8 ± 0.69 vs 2.06 ± 0.72,P < 0.05)and Musashi-1/CDX2(blood and LP:0 vs scattered) coexpressions were found in blood and lamina propria of UC samples.HGFR/CD133 and CD133/CDX2 coexpressions appeared only in UC lamina propria samples.CDX2,Lgr5 and Musashi-1 expressions in UC blood samples were not accompanied by CK20 mRNA expression.CONCLUSION:In active UC,a portion of circulating HGFR-expressing cells are committed to the epithelial lineage,and may participate in mucosal regeneration by undergoing mesenchymal-to-epithelial transition.
文摘Epidemiological studies have shown a high prevalence of low serum testosterone levels in men with cardiovascular disease. Moreover, the tyrosine kinase receptor Axl, the ligand of which is growth arrest-specific protein 6 (GAS6), is expressed in the vasculature, and serum GAS6 levels are associated with endothelial dysfunction and cardiovascular events. Testosterone regulates GAS6 gene transcription directly, which inhibits calcification of vascular smooth muscle cells and provides a mechanistic insight into the cardioprotective action of androgens. This study was designed to determine the correlation between serum GAS6 and testosterone levels in male patients with coronary heart disease (CHD). We recruited 225 patients with CHD and 102 apparently healthy controls, Serum concentrations of GAS6 and soluble Axl were quantified by an enzyme-linked immunosorbent assay. Levels of high-sensitivity C-reactive protein, testosterone, estradiol, and other routine biochemical markers were also measured. Testosterone decreased from 432.69 ± 14.40 to 300.76± 6.23 ng d1-1 (P 〈 0.001) and GAS6 decreased from 16.20± 0.31 to 12.51 ± 0.19 ng ml-1 (P 〈 0.001) in patients with CHD, compared with control subjects. Multiple linear regression analysis showed that serum testosterone and GAS6 levels were positively associated in male patients with CHD. Alterations in GAS6 levels may influence the development of CHD. Downregulation of GAS6/Axl signaling in the presence of low sex hormone levels during disease progression is a potential mechanism by which GAS6 affects CHD. This study provides novel results regarding the influence of sex hormones on serum GAS6 levels in patients with CHD.