The stochastic growth-fragmentation model describes the temporal evolution of a structured cell population through a discrete-time and continuous-state Markov chain.The simulations of this stochastic process and its i...The stochastic growth-fragmentation model describes the temporal evolution of a structured cell population through a discrete-time and continuous-state Markov chain.The simulations of this stochastic process and its invariant measure are of interest.In this paper,we propose a numerical scheme for both the simulation of the process and the computation of the invariant measure,and show that under appropriate assumptions,the numerical chain converges to the continuous growth-fragmentation chain with an explicit error bound.With a triangle inequality argument,we are also able to quantitatively estimate the distance between the invariant measures of these two Markov chains.展开更多
基金partially supported by the National Key R&D Program of China,Project No.2020YFA0712000NSFC Grant No.12031013 and 12171013.
文摘The stochastic growth-fragmentation model describes the temporal evolution of a structured cell population through a discrete-time and continuous-state Markov chain.The simulations of this stochastic process and its invariant measure are of interest.In this paper,we propose a numerical scheme for both the simulation of the process and the computation of the invariant measure,and show that under appropriate assumptions,the numerical chain converges to the continuous growth-fragmentation chain with an explicit error bound.With a triangle inequality argument,we are also able to quantitatively estimate the distance between the invariant measures of these two Markov chains.