The Fankou Pb-Zn deposit is a very important and famous deposit in China. The time of Pb-Zn enrichment has been debated for a long time in this deposit. A total of seventeen samples of three sections were taken from t...The Fankou Pb-Zn deposit is a very important and famous deposit in China. The time of Pb-Zn enrichment has been debated for a long time in this deposit. A total of seventeen samples of three sections were taken from the Fankou mine for the study of mineralization time and the mechanism of ore formation. The samples were analyzed by microscope, Soxhlet-extract, GC, and GC/MS methods. The results indicated that organic bulk parameters vary with the Pb-Zn contents in different samples and clearly were influenced by ore sulfide formation. Organically geochemical parameters (MPI 1, CPI) indicate that the paleotemperatures in the Fankou deposit are lower than 80℃ in all three sections. Sulfides in the wall rocks might occur mainly during synsedimentation or early diagenesis by BSR or partly by PR, rather than by TSR at such low temperatures, this stage may be the first mineralization stage. Sulfides near the faults might be formed by TSR after sedimentation, this stage may be the second mineralization stage.展开更多
On the basis of mineral paragenesis and the chemistry and homogenization temperatures of fluid inclusions,the physicochemical parameters were calculated for the formation of the Dalingkou Ag-Pb-Zu deposit in Zhejiang....On the basis of mineral paragenesis and the chemistry and homogenization temperatures of fluid inclusions,the physicochemical parameters were calculated for the formation of the Dalingkou Ag-Pb-Zu deposit in Zhejiang.From the early to the late stage of mineralization the ore-forming temperature veriation was found to be 298.5 ℃→267.0℃→217.6℃→167.3℃,with a corresponding pH change of 3.0-5.8→6.1→6.7→5.0→7.3.The pressure changed from 403.8to 128.5atm,and logfS2-9.9→-11.2→<-15;logfO2<-44→-45.6--42.6→>-44.2;and logf CO2 around -1.55.In conjunction with geological observations.the deposit is considered to be of meso-epithermal origin,i.e.,it was formed after continental volcanic-subvolcanic activity.The major factors affecting ore precipitation are the decreasing temperature and the increasing pH of ore-forming solutions.展开更多
Located on the northeast margin of the Qiangtang terrane between the Jinshajiang suture zone and Bangonghu-Nujiang suture zone,the Dongmozhazhua and Mohailaheng Pb-Zn deposits in the Yushu area of Qinghai Province are...Located on the northeast margin of the Qiangtang terrane between the Jinshajiang suture zone and Bangonghu-Nujiang suture zone,the Dongmozhazhua and Mohailaheng Pb-Zn deposits in the Yushu area of Qinghai Province are representative Pb-Zn deposits of the Pb-Zn-Cu polymetallic mineralization belt in the northern part of the Nujiang-Lancangjiang-Jinshajiang area,which are in the front belt of the Yushu thrust nappe system.The formed environments of these two deposits are different from those of sediment-hosted base metal deposits elsewhere in the world.The authors hold that they were formed during the Indian-Asian continental collision and developed within the fold-thrust belt combined with thrust and strike-slip-related Cenozoic basins in the interior of the collisional zone.Studying on the metallogenic epochs of these two deposits is helpful to the understanding of ore-forming regularity of the regional Pb-Zn-Cu mineralization belt and also to the search for new deposits in this region.The age of the Dongmozhazhua deposit has been determined by the Rb-Sr isochron method for sphalerite residues,whereas the age of the Mohailaheng deposit has been determined by the Rb-Sr isochron method for sphalerite residues and the Sm-Nd isochron method for fluorite.The age of the Dongmozhazhua deposit is 35.0-±0.0 Ma ((87Sr/86Sr)0=0.708807) for sphalerite residues.The age of the Mohailaheng deposit is 32.2±0.4 Ma ((87Sr/86Sr)o=0.708514) for sphalerite residues and 31.8±0.3 Ma ((143Nd/144Nd)o=0.512362) for fluorite with an average of 32.0 Ma.Together with the regional geological setting during mineralization,a possible tectonic model for metallogeny of the Dongmozhazhua and Mohailaheng Pb-Zn deposits has been established.These two ages are close to the ages of the Pb-Zn deposits in the Lanping and Tuotuohe basins,indicating that it is possible that the narrow 1000-kilometer-long belt controlled by a thrust nappe system on the eastern and northern margins of the Tibetan plateau could be a giant Pb-Zn mineralized belt.展开更多
In recent years big strides have been made in the exploration of ores in the central-south segment of the Da Hinggan Ling Range,though some debates still exist on the metallogenesis and sources of ore-forming material...In recent years big strides have been made in the exploration of ores in the central-south segment of the Da Hinggan Ling Range,though some debates still exist on the metallogenesis and sources of ore-forming materials.Pyrite and other sulfides in direct relation to the Pb-Zn-Ag ore deposits were chosen for the He and Ar isotopic analysis of ore-forming fluids,and the first He and Ar isotope data have been obtained from the study region.3He/4He ratios in 14 samples collected from 7 mining districts are 2.17×10-6-12.52×10-6,averaging 6.86×10-6 and their R/Ra ratios are 1.56-9.01 Ra,averaging 4.37 Ra.By projecting the data points onto the 3He-4He concentrations diagram,all the points fall near the mantle helium area.The calculated mantle-source helium ratios are within the range of 19.58%-76.96%,with an average of 49.52%.Argon isotopic characteristics are close to those of mantle source,indicating that the ore-forming material was transport upwards via the multi-stage evolution of mantle plume and concentrated as ores in the favorable loci of mantle branch structures.展开更多
基金support to this study by the NSFC Projects (Nos.40173004 and 40773040) is gratefully acknowledged
文摘The Fankou Pb-Zn deposit is a very important and famous deposit in China. The time of Pb-Zn enrichment has been debated for a long time in this deposit. A total of seventeen samples of three sections were taken from the Fankou mine for the study of mineralization time and the mechanism of ore formation. The samples were analyzed by microscope, Soxhlet-extract, GC, and GC/MS methods. The results indicated that organic bulk parameters vary with the Pb-Zn contents in different samples and clearly were influenced by ore sulfide formation. Organically geochemical parameters (MPI 1, CPI) indicate that the paleotemperatures in the Fankou deposit are lower than 80℃ in all three sections. Sulfides in the wall rocks might occur mainly during synsedimentation or early diagenesis by BSR or partly by PR, rather than by TSR at such low temperatures, this stage may be the first mineralization stage. Sulfides near the faults might be formed by TSR after sedimentation, this stage may be the second mineralization stage.
文摘On the basis of mineral paragenesis and the chemistry and homogenization temperatures of fluid inclusions,the physicochemical parameters were calculated for the formation of the Dalingkou Ag-Pb-Zu deposit in Zhejiang.From the early to the late stage of mineralization the ore-forming temperature veriation was found to be 298.5 ℃→267.0℃→217.6℃→167.3℃,with a corresponding pH change of 3.0-5.8→6.1→6.7→5.0→7.3.The pressure changed from 403.8to 128.5atm,and logfS2-9.9→-11.2→<-15;logfO2<-44→-45.6--42.6→>-44.2;and logf CO2 around -1.55.In conjunction with geological observations.the deposit is considered to be of meso-epithermal origin,i.e.,it was formed after continental volcanic-subvolcanic activity.The major factors affecting ore precipitation are the decreasing temperature and the increasing pH of ore-forming solutions.
文摘Located on the northeast margin of the Qiangtang terrane between the Jinshajiang suture zone and Bangonghu-Nujiang suture zone,the Dongmozhazhua and Mohailaheng Pb-Zn deposits in the Yushu area of Qinghai Province are representative Pb-Zn deposits of the Pb-Zn-Cu polymetallic mineralization belt in the northern part of the Nujiang-Lancangjiang-Jinshajiang area,which are in the front belt of the Yushu thrust nappe system.The formed environments of these two deposits are different from those of sediment-hosted base metal deposits elsewhere in the world.The authors hold that they were formed during the Indian-Asian continental collision and developed within the fold-thrust belt combined with thrust and strike-slip-related Cenozoic basins in the interior of the collisional zone.Studying on the metallogenic epochs of these two deposits is helpful to the understanding of ore-forming regularity of the regional Pb-Zn-Cu mineralization belt and also to the search for new deposits in this region.The age of the Dongmozhazhua deposit has been determined by the Rb-Sr isochron method for sphalerite residues,whereas the age of the Mohailaheng deposit has been determined by the Rb-Sr isochron method for sphalerite residues and the Sm-Nd isochron method for fluorite.The age of the Dongmozhazhua deposit is 35.0-±0.0 Ma ((87Sr/86Sr)0=0.708807) for sphalerite residues.The age of the Mohailaheng deposit is 32.2±0.4 Ma ((87Sr/86Sr)o=0.708514) for sphalerite residues and 31.8±0.3 Ma ((143Nd/144Nd)o=0.512362) for fluorite with an average of 32.0 Ma.Together with the regional geological setting during mineralization,a possible tectonic model for metallogeny of the Dongmozhazhua and Mohailaheng Pb-Zn deposits has been established.These two ages are close to the ages of the Pb-Zn deposits in the Lanping and Tuotuohe basins,indicating that it is possible that the narrow 1000-kilometer-long belt controlled by a thrust nappe system on the eastern and northern margins of the Tibetan plateau could be a giant Pb-Zn mineralized belt.
文摘In recent years big strides have been made in the exploration of ores in the central-south segment of the Da Hinggan Ling Range,though some debates still exist on the metallogenesis and sources of ore-forming materials.Pyrite and other sulfides in direct relation to the Pb-Zn-Ag ore deposits were chosen for the He and Ar isotopic analysis of ore-forming fluids,and the first He and Ar isotope data have been obtained from the study region.3He/4He ratios in 14 samples collected from 7 mining districts are 2.17×10-6-12.52×10-6,averaging 6.86×10-6 and their R/Ra ratios are 1.56-9.01 Ra,averaging 4.37 Ra.By projecting the data points onto the 3He-4He concentrations diagram,all the points fall near the mantle helium area.The calculated mantle-source helium ratios are within the range of 19.58%-76.96%,with an average of 49.52%.Argon isotopic characteristics are close to those of mantle source,indicating that the ore-forming material was transport upwards via the multi-stage evolution of mantle plume and concentrated as ores in the favorable loci of mantle branch structures.