1.Objective The Fankou giant zinc(Zn)-lead(Pb)deposit in Guangdong Province is well-known for its huge reserves of over 10 Mt(million ton)Zn+Pb metals and high ore-grade with Zn+Pb exceeding 15%(Guangdong Fankou Depos...1.Objective The Fankou giant zinc(Zn)-lead(Pb)deposit in Guangdong Province is well-known for its huge reserves of over 10 Mt(million ton)Zn+Pb metals and high ore-grade with Zn+Pb exceeding 15%(Guangdong Fankou Deposit Investigation Group,1980;Zhu XY et al.,2017).After 60 years of exploration and exploitation,the deposit has accumulated millions of tons of tailings.One interesting question is that what components are hosted in these tailings,and whether some key and critical metals such as gallium and germanium are extremely enriched and worth further comprehensive utilization.This motivated us to conduct an integrated set of field investigation,sampling,major-trace element analyses and reserve assessments about the Fankou tailings.In this contribution,we discover that the tailings contain a variety of metal elements such as zinc,lead and gallium with comprehensive utilization potential.These data can act as a scientific guidance for further exploration and utilization of the Fankou tailings,and aid to enhance the utilization efficiency of the key mineral resource in China.Our study also provide demonstration for future green mine construction in China.展开更多
The long-term dynamic evolution and underlying mechanisms of coastal landscape pattern stability,driven by strong anthropogenic interference and consequently climate change,are topics of major interest in national and...The long-term dynamic evolution and underlying mechanisms of coastal landscape pattern stability,driven by strong anthropogenic interference and consequently climate change,are topics of major interest in national and international scientific research.Guangdong Province,located in southeastern China,has been undergoing rapid urbanization over several decades.In this study,we quantitatively determined the scale threshold characteristics of coastal landscape pattern stability in Guangdong Province,from the dual perspective of spatial heterogeneity and spatial autocorrelation.An analysis of the spatiotemporal evolution of the coastal landscape was conducted after the optical scale was determined.Then,we applied the geodetector statistical method to quantitatively explore the mechanisms underlying coastal landscape pattern stability.Based on the inflection point of landscape metrics and the maximum value of the MoranⅠindex,the optimal scale for analyzing coastal landscape pattern stability in Guangdong Province was 240 m×240 m.Within the past several decades,coastal landscape pattern stability increased slightly and then decreased,with a turning point around 2005.The most significant variations in coastal landscape pattern stability were observed in the transition zone of rural-urban expansion.A q-statistics analysis showed that the explanatory power of paired factors was greater than that of a single driving factor;the paired factors with the greatest impact on coastal landscape pattern stability in Guangdong Province were the change in gross industrial output and change in average annual precipitation from 2010 to 2015,based on a q value of 0.604.These results will contribute to future efforts to achieve sustainable coastal development and provide a scientific basis and technical support for the rational planning and utilization of resources in large estuarine areas,including marine disaster prevention and seawall ecological restoration.展开更多
Objective:To investigate the effect of Guangdong Shenqu(GSQ)on intestinal flora structure in mice with food stagnation through 16S rDNA sequencing.Methods: Mice were randomly assigned to control,model,GSQ low-dose(GSQ...Objective:To investigate the effect of Guangdong Shenqu(GSQ)on intestinal flora structure in mice with food stagnation through 16S rDNA sequencing.Methods: Mice were randomly assigned to control,model,GSQ low-dose(GSQL),GSQ medium-dose(GSQM),GSQ high-dose(GSQH),and lacidophilin tablets(LAB)groups,with each group containing 10 mice.A food stagnation and internal heat mouse model was established through intragastric administration of a mixture of beeswax and olive oil(1:15).The control group was administered normal saline,and the model group was administered beeswax and olive oil to maintain a state.The GSQL(2 g/kg),GSQM(4 g/kg),GSQH(8 g/kg),and LAB groups(0.625 g/kg)were administered corresponding drugs for 5 d.After administration,16S rDNA sequencing was performed to assess gut microbiota in mouse fecal samples.Results: The model group exhibited significant intestinal flora changes.Following GSQ administration,the abundance and diversity index of the intestinal flora increased significantly,the number of bacterial species was regulated,andαandβdiversity were improved.GSQ administration increased the abundance of probiotics,including Clostridia,Lachnospirales,and Lactobacillus,whereas the abundance of conditional pathogenic bacteria,such as Allobaculum,Erysipelotrichaceae,and Bacteroides decreased.Functional prediction analysis indicated that the pathogenesis of food stagnation and GSQ intervention were primarily associated with carbohydrate,lipid,and amino acid metabolism,among other metabolic pathways.Conclusion: The digestive mechanism of GSQ may be attributed to its role in restoring diversity and abundance within the intestinal flora,thereby improving the composition and structure of the intestinal flora in mice and subsequently influencing the regulation of metabolic pathways.展开更多
My journey to Zhongshan City in Guangdong Province alongside experts,foreign correspondents,and local Chinese journalists proved to be an enlightening exploration of the intricacies of China’s development,especially ...My journey to Zhongshan City in Guangdong Province alongside experts,foreign correspondents,and local Chinese journalists proved to be an enlightening exploration of the intricacies of China’s development,especially within its smaller cities.While a brief five-day sojourn wasn’t sufficient for intimacy with the city’s entirety,the immersion into Zhongshan’s cultural,historical,and modern facets,including Zhongshan Museum,urban planning zones,business hubs,an industrial park,ancient villages,Dr.Sun Yat-sen Museum,and a monumental bridge project,left me with the impression that the city is awakening like a dragon ascending from the heart of Guangdong.展开更多
Guangdong Supply and Marketing Cooperative serves as an important institution for the“Three Rural Areas”in the Guangdong-Hong Kong-Macao Greater Bay Area.Its digital transformation and optimization serve as powerful...Guangdong Supply and Marketing Cooperative serves as an important institution for the“Three Rural Areas”in the Guangdong-Hong Kong-Macao Greater Bay Area.Its digital transformation and optimization serve as powerful supports for rural revitalization.This paper systematically reviews the main practices and effectiveness of the digital transformation within the Guangdong Supply and Marketing Cooperative.It also analyzes the current development dilemmas faced in the construction of digital supply and marketing.Additionally,it proposes targeted solutions,including building a big data resource base,optimizing the digital supply and marketing cloud platform,developing digital publictype agricultural social service applications,establishing a new model of rural e-commerce,enhancing the traceability management system for agricultural products,and strengthening the construction of the digital human resources system.These proposals aim to further promote the strategy for revitalizing the countryside.展开更多
The phenomenon of aphasia in Chinese culture is serious.The existing English teaching materials emphasize too much Western culture education and lack traditional Chinese cultural elements.Therefore,this paper takes th...The phenomenon of aphasia in Chinese culture is serious.The existing English teaching materials emphasize too much Western culture education and lack traditional Chinese cultural elements.Therefore,this paper takes the Guangdong Maritime Silk Road as an example to study the specific application of traditional Chinese culture in cross-cultural English education.This paper first summarizes the significance of cross-cultural integration into college English education and then points out the serious phenomenon of Chinese cultural aphasia.Next,the paper focuses on English education,using English textbooks as a starting point to explore and integrate strategies related to excellent traditional Chinese culture from the Guangdong Maritime Silk Road.By integrating traditional Chinese culture into business English classes(with the Guangdong Maritime Silk Road as an example),the study explores the influence of such cultural integration on students’cross-cultural communication skills,cultural identity,and learning effects.The results showed that the P value of the experimental group and the control group was<0.05,that is,cultural integration had a positive effect on improving the effect of cross-cultural English education.The overall scores and cultural confidence of the experimental group are higher than those of the control group,which proves that cross-cultural teaching has a positive effect on the improvement of students’scores.展开更多
With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterati...With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota,microbial metabolites,and the functions of astrocytes.The microbiota–gut–brain axis has been the focus of multiple studies and is closely associated with cognitive function.This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases.This article also summarizes the gut microbiota components that affect astrocyte function,mainly through the vagus nerve,immune responses,circadian rhythms,and microbial metabolites.Finally,this article summarizes the mechanism by which the gut microbiota–astrocyte axis plays a role in Alzheimer’s and Parkinson’s diseases.Our findings have revealed the critical role of the microbiota–astrocyte axis in age-related cognitive decline,aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition.展开更多
BACKGROUND Adult-onset Still's disease(AOSD)is a rare autoinflammatory disease charac-terized by nonspecific symptoms such as fever,rash,sore throat and arthralgia.This paper reports a clinical case of AOSD succes...BACKGROUND Adult-onset Still's disease(AOSD)is a rare autoinflammatory disease charac-terized by nonspecific symptoms such as fever,rash,sore throat and arthralgia.This paper reports a clinical case of AOSD successfully treated with Bo’s abdo-minal acupuncture(BAA).CASE SUMMARY We report a 20-year-old man who suffered from cold exposure,presenting with high fever,rash,sore throat,arthralgia,and elevated erythrocyte sedimentation rate,leukocytosis with neutrophilic predominance,elevated ferritin,elevated C-reactive protein,and negative rheumatoid factors.He was diagnosed with AOSD based on the Yamaguchi criteria.After treatment with traditional Chinese medi-cine(TCM)decoction and prednisone acetate tablets,there was some alleviation of sore throat,joint and muscle pain,and fever,but he still had persistent low-grade fever,rash,sore throat and arthralgia.He went to the TCM acupuncture outpatient department to receive BAA.Abdominal acupoints Zhongwan(CV12),Xiawan(CV10),0.5 cm below Xiawan(CV10),Qihai(CV6),Guanyuan(CV4),bilateral Qixue(KI13),bilateral Huaroumen(ST24),bilateral Shangfengshidian(AB1)and bilateral Daheng(SP15)were selected.After 3 months treatment,all symptoms disappeared,and the laboratory examination returned to normal levels.He did not take glucocorticoids or nonsteroidal anti-inflammatory drugs afterwards,and no relapse was observed during the 3-year follow-up period.CONCLUSION BAA can be used as a complementary medical approach for treatment of AOSD.展开更多
The interaction between metabolic dysfunction and inflammation is central to the development of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.Obesity-related conditions like type 2 d...The interaction between metabolic dysfunction and inflammation is central to the development of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.Obesity-related conditions like type 2 diabetes and non-alcoholic fatty liver disease exacerbate this relationship.Peripheral lipid accumulation,particularly in the liver,initiates a cascade of inflammatory processes that extend to the brain,influencing critical metabolic regulatory regions.Ceramide and palmitate,key lipid components,along with lipid transporters lipocalin-2 and apolipoprotein E,contribute to neuroinflammation by disrupting blood–brain barrier integrity and promoting gliosis.Peripheral insulin resistance further exacerbates brain insulin resistance and neuroinflammation.Preclinical interventions targeting peripheral lipid metabolism and insulin signaling pathways have shown promise in reducing neuroinflammation in animal models.However,translating these findings to clinical practice requires further investigation into human subjects.In conclusion,metabolic dysfunction,peripheral inflammation,and insulin resistance are integral to neuroinflammation and neurodegeneration.Understanding these complex mechanisms holds potential for identifying novel therapeutic targets and improving outcomes for neurodegenerative diseases.展开更多
The vast majority of in vitro studies have demonstrated that PINK1 phosphorylates Parkin to work together in mitophagy to protect against neuronal degeneration.However,it remains largely unclear how PINK1 and Parkin a...The vast majority of in vitro studies have demonstrated that PINK1 phosphorylates Parkin to work together in mitophagy to protect against neuronal degeneration.However,it remains largely unclear how PINK1 and Parkin are expressed in mammalian brains.This has been difficult to address because of the intrinsically low levels of PINK1 and undetectable levels of phosphorylated Parkin in small animals.Understanding this issue is critical for elucidating the in vivo roles of PINK1 and Parkin.Recently,we showed that the PINK1 kinase is selectively expressed as a truncated form(PINK1–55)in the primate brain.In the present study,we used multiple antibodies,including our recently developed monoclonal anti-PINK1,to validate the selective expression of PINK1 in the primate brain.We found that PINK1 was stably expressed in the monkey brain at postnatal and adulthood stages,which is consistent with the findings that depleting PINK1 can cause neuronal loss in developing and adult monkey brains.PINK1 was enriched in the membrane-bound fractionations,whereas Parkin was soluble with a distinguishable distribution.Immunofluorescent double staining experiments showed that PINK1 and Parkin did not colocalize under physiological conditions in cultured monkey astrocytes,though they did colocalize on mitochondria when the cells were exposed to mitochondrial stress.These findings suggest that PINK1 and Parkin may have distinct roles beyond their well-known function in mitophagy during mitochondrial damage.展开更多
Parkinson’s disease is the second most common progressive neurodegenerative disorder,and few reliable biomarkers are available to track disease progression.The proteins,DNA,mRNA,and lipids carried by exosomes reflect...Parkinson’s disease is the second most common progressive neurodegenerative disorder,and few reliable biomarkers are available to track disease progression.The proteins,DNA,mRNA,and lipids carried by exosomes reflect intracellular changes,and thus can serve as biomarkers for a variety of conditions.In this study,we investigated alterations in the protein content of plasma exosomes derived from patients with Parkinson’s disease and the potential therapeutic roles of these proteins in Parkinson’s disease.Using a tandem mass tag-based quantitative proteomics approach,we characterized the proteomes of plasma exosomes derived from individual patients,identified exosomal protein signatures specific to patients with Parkinson’s disease,and identified N-acetyl-alpha-glucosaminidase as a differentially expressed protein.N-acetyl-alpha-glucosaminidase expression levels in exosomes from the plasma of patients and healthy controls were validated by enzyme-linked immunosorbent assay and western blot.The results demonstrated that the exosomal N-acetyl-alpha-glucosaminidase concentration was not only lower in Parkinson’s disease,but also decreased with increasing Hoehn-Yahr stage,suggesting that N-acetyl-alpha-glucosaminidase could be used to rapidly evaluate Parkinson’s disease severity.Furthermore,western blot and immunohistochemistry analysis showed that N-acetyl-alpha-glucosaminidase levels were markedly reduced both in cells treated with 1-methyl-4-phenylpyridinium and cells overexpressingα-synuclein compared with control cells.Additionally,N-acetyl-alpha-glucosaminidase overexpression significantly increased cell viability and inhibitedα-synuclein expression in 1-methyl-4-phenylpyridinium-treated cells.Taken together,our findings demonstrate for the first time that exosomal N-acetyl-alpha-glucosaminidase may serve as a biomarker for Parkinson’s disease diagnosis,and that N-acetyl-alpha-glucosaminidase may reduceα-synuclein expression and 1-methyl-4-phenylpyridinium-induced neurotoxicity,thus providing a new therapeutic target for Parkinson’s disease.展开更多
Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal sur...Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function.Increasing amounts of evidence highlight several key points:(1)Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer’s disease and Parkinson’s disease,and potentially,similar alterations occur in humans.(2)Genetic mutations of Netrin-1 receptors increase an individuals’susceptibility to neurodegenerative disorders.(3)Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function.(4)Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers.These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases.Through a comprehensive review of Netrin-1 signaling pathways,our objective is to uncover potential therapeutic avenues for neurodegenerative disorders.展开更多
Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular...Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular degradation pathways,the autophagy-lysosome pathway plays an important role in eliminating these proteins.Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance ofα-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson’s disease.Moreover,multiple genes associated with the pathogenesis of Parkinson’s disease are intimately linked to alterations in the autophagy-lysosome pathway.Thus,this pathway appears to be a promising therapeutic target for treatment of Parkinson’s disease.In this review,we briefly introduce the machinery of autophagy.Then,we provide a description of the effects of Parkinson’s disease–related genes on the autophagy-lysosome pathway.Finally,we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy–lysosome pathway and their applications in Parkinson’s disease.展开更多
BACKGROUND Mucosal healing(MH)is the major therapeutic target for Crohn's disease(CD).As the most commonly involved intestinal segment,small bowel(SB)assessment is crucial for CD patients.Yet,it poses a significan...BACKGROUND Mucosal healing(MH)is the major therapeutic target for Crohn's disease(CD).As the most commonly involved intestinal segment,small bowel(SB)assessment is crucial for CD patients.Yet,it poses a significant challenge due to its limited accessibility through conventional endoscopic methods.AIM To establish a noninvasive radiomic model based on computed tomography enterography(CTE)for MH assessment in SBCD patients.METHODS Seventy-three patients diagnosed with SBCD were included and divided into a training cohort(n=55)and a test cohort(n=18).Radiomic features were obtained from CTE images to establish a radiomic model.Patient demographics were analysed to establish a clinical model.A radiomic-clinical nomogram was constructed by combining significant clinical and radiomic features.The diagnostic efficacy and clinical benefit were evaluated via receiver operating characteristic(ROC)curve analysis and decision curve analysis(DCA),respectively.RESULTS Of the 73 patients enrolled,25 patients achieved MH.The radiomic-clinical nomogram had an area under the ROC curve of 0.961(95%confidence interval:0.886-1.000)in the training cohort and 0.958(0.877-1.000)in the test cohort and provided superior clinical benefit to either the clinical or radiomic models alone,as demonstrated by DCA.CONCLUSION These results indicate that the CTE-based radiomic-clinical nomogram is a promising imaging biomarker for MH and serves as a potential noninvasive alternative to enteroscopy for MH assessment in SBCD patients.展开更多
Alzheimer’s disease is a debilitating,progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins,including amyloid plaques and intracellular tau tangles,primarily within...Alzheimer’s disease is a debilitating,progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins,including amyloid plaques and intracellular tau tangles,primarily within the brain.Lysosomes,crucial intracellular organelles responsible for protein degradation,play a key role in maintaining cellular homeostasis.Some studies have suggested a link between the dysregulation of the lysosomal system and pathogenesis of neurodegenerative diseases,including Alzheimer’s disease.Restoring the normal physiological function of lysosomes hold the potential to reduce the pathological burden and improve the symptoms of Alzheimer’s disease.Currently,the efficacy of drugs in treating Alzheimer’s disease is limited,with major challenges in drug delivery efficiency and targeting.Recently,nanomaterials have gained widespread use in Alzheimer’s disease drug research owing to their favorable physical and chemical properties.This review aims to provide a comprehensive overview of recent advances in using nanomaterials(polymeric nanomaterials,nanoemulsions,and carbon-based nanomaterials)to enhance lysosomal function in treating Alzheimer’s disease.This review also explores new concepts and potential therapeutic strategies for Alzheimer’s disease through the integration of nanomaterials and modulation of lysosomal function.In conclusion,this review emphasizes the potential of nanomaterials in modulating lysosomal function to improve the pathological features of Alzheimer’s disease.The application of nanotechnology to the development of Alzheimer’s disease drugs brings new ideas and approaches for future treatment of this disease.展开更多
Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments.The current therapeutic strategies,primarily based on choli...Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments.The current therapeutic strategies,primarily based on cholinesterase inhibitors and N-methyl-Daspartate receptor antagonists,offer limited symptomatic relief without halting disease progression,highlighting an urgent need for novel research directions that address the key mechanisms underlying Alzheimer's disease.Recent studies have provided insights into the critical role of glycolysis,a fundamental energy metabolism pathway in the brain,in the pathogenesis of Alzheimer's disease.Alterations in glycolytic processes within neurons and glial cells,including microglia,astrocytes,and oligodendrocytes,have been identified as significant contributors to the pathological landscape of Alzheimer's disease.Glycolytic changes impact neuronal health and function,thus offering promising targets for therapeutic intervention.The purpose of this review is to consolidate current knowledge on the modifications in glycolysis associated with Alzheimer's disease and explore the mechanisms by which these abnormalities contribute to disease onset and progression.Comprehensive focus on the pathways through which glycolytic dysfunction influences Alzheimer's disease pathology should provide insights into potential therapeutic targets and strategies that pave the way for groundbreaking treatments,emphasizing the importance of understanding metabolic processes in the quest for clarification and management of Alzheimer's disease.展开更多
基金supported by the National Key Research and Development Program of China(2021YFC2900300)the National Natural Science Foundation of China(42022020 and 41872193)+1 种基金the Guangdong Province Introduced of Innovative R&D Team(2021ZT09H399)the Zhongjin Lingnan Fankou Lead-zinc Mine Enterprise Entrusted Project(2022.J005).
文摘1.Objective The Fankou giant zinc(Zn)-lead(Pb)deposit in Guangdong Province is well-known for its huge reserves of over 10 Mt(million ton)Zn+Pb metals and high ore-grade with Zn+Pb exceeding 15%(Guangdong Fankou Deposit Investigation Group,1980;Zhu XY et al.,2017).After 60 years of exploration and exploitation,the deposit has accumulated millions of tons of tailings.One interesting question is that what components are hosted in these tailings,and whether some key and critical metals such as gallium and germanium are extremely enriched and worth further comprehensive utilization.This motivated us to conduct an integrated set of field investigation,sampling,major-trace element analyses and reserve assessments about the Fankou tailings.In this contribution,we discover that the tailings contain a variety of metal elements such as zinc,lead and gallium with comprehensive utilization potential.These data can act as a scientific guidance for further exploration and utilization of the Fankou tailings,and aid to enhance the utilization efficiency of the key mineral resource in China.Our study also provide demonstration for future green mine construction in China.
基金The National Natural Science Foundation of China under contract Nos 42201104 and 42071123the China Postdoctoral Research Foundation under contract No.2023M730758.
文摘The long-term dynamic evolution and underlying mechanisms of coastal landscape pattern stability,driven by strong anthropogenic interference and consequently climate change,are topics of major interest in national and international scientific research.Guangdong Province,located in southeastern China,has been undergoing rapid urbanization over several decades.In this study,we quantitatively determined the scale threshold characteristics of coastal landscape pattern stability in Guangdong Province,from the dual perspective of spatial heterogeneity and spatial autocorrelation.An analysis of the spatiotemporal evolution of the coastal landscape was conducted after the optical scale was determined.Then,we applied the geodetector statistical method to quantitatively explore the mechanisms underlying coastal landscape pattern stability.Based on the inflection point of landscape metrics and the maximum value of the MoranⅠindex,the optimal scale for analyzing coastal landscape pattern stability in Guangdong Province was 240 m×240 m.Within the past several decades,coastal landscape pattern stability increased slightly and then decreased,with a turning point around 2005.The most significant variations in coastal landscape pattern stability were observed in the transition zone of rural-urban expansion.A q-statistics analysis showed that the explanatory power of paired factors was greater than that of a single driving factor;the paired factors with the greatest impact on coastal landscape pattern stability in Guangdong Province were the change in gross industrial output and change in average annual precipitation from 2010 to 2015,based on a q value of 0.604.These results will contribute to future efforts to achieve sustainable coastal development and provide a scientific basis and technical support for the rational planning and utilization of resources in large estuarine areas,including marine disaster prevention and seawall ecological restoration.
基金supported by the National Natural Science Foundation of China(81872995).
文摘Objective:To investigate the effect of Guangdong Shenqu(GSQ)on intestinal flora structure in mice with food stagnation through 16S rDNA sequencing.Methods: Mice were randomly assigned to control,model,GSQ low-dose(GSQL),GSQ medium-dose(GSQM),GSQ high-dose(GSQH),and lacidophilin tablets(LAB)groups,with each group containing 10 mice.A food stagnation and internal heat mouse model was established through intragastric administration of a mixture of beeswax and olive oil(1:15).The control group was administered normal saline,and the model group was administered beeswax and olive oil to maintain a state.The GSQL(2 g/kg),GSQM(4 g/kg),GSQH(8 g/kg),and LAB groups(0.625 g/kg)were administered corresponding drugs for 5 d.After administration,16S rDNA sequencing was performed to assess gut microbiota in mouse fecal samples.Results: The model group exhibited significant intestinal flora changes.Following GSQ administration,the abundance and diversity index of the intestinal flora increased significantly,the number of bacterial species was regulated,andαandβdiversity were improved.GSQ administration increased the abundance of probiotics,including Clostridia,Lachnospirales,and Lactobacillus,whereas the abundance of conditional pathogenic bacteria,such as Allobaculum,Erysipelotrichaceae,and Bacteroides decreased.Functional prediction analysis indicated that the pathogenesis of food stagnation and GSQ intervention were primarily associated with carbohydrate,lipid,and amino acid metabolism,among other metabolic pathways.Conclusion: The digestive mechanism of GSQ may be attributed to its role in restoring diversity and abundance within the intestinal flora,thereby improving the composition and structure of the intestinal flora in mice and subsequently influencing the regulation of metabolic pathways.
文摘My journey to Zhongshan City in Guangdong Province alongside experts,foreign correspondents,and local Chinese journalists proved to be an enlightening exploration of the intricacies of China’s development,especially within its smaller cities.While a brief five-day sojourn wasn’t sufficient for intimacy with the city’s entirety,the immersion into Zhongshan’s cultural,historical,and modern facets,including Zhongshan Museum,urban planning zones,business hubs,an industrial park,ancient villages,Dr.Sun Yat-sen Museum,and a monumental bridge project,left me with the impression that the city is awakening like a dragon ascending from the heart of Guangdong.
基金Guangdong Province Philosophy and Social Sciences Co-Construction Project(GD23XGL051)Guangdong University of Science and Technology(GKY-2023KYZDW-2)。
文摘Guangdong Supply and Marketing Cooperative serves as an important institution for the“Three Rural Areas”in the Guangdong-Hong Kong-Macao Greater Bay Area.Its digital transformation and optimization serve as powerful supports for rural revitalization.This paper systematically reviews the main practices and effectiveness of the digital transformation within the Guangdong Supply and Marketing Cooperative.It also analyzes the current development dilemmas faced in the construction of digital supply and marketing.Additionally,it proposes targeted solutions,including building a big data resource base,optimizing the digital supply and marketing cloud platform,developing digital publictype agricultural social service applications,establishing a new model of rural e-commerce,enhancing the traceability management system for agricultural products,and strengthening the construction of the digital human resources system.These proposals aim to further promote the strategy for revitalizing the countryside.
基金Research on the Cultural Inheritance of Guangdong Maritime Silk Road Enabled by AI(CXXL2024249)。
文摘The phenomenon of aphasia in Chinese culture is serious.The existing English teaching materials emphasize too much Western culture education and lack traditional Chinese cultural elements.Therefore,this paper takes the Guangdong Maritime Silk Road as an example to study the specific application of traditional Chinese culture in cross-cultural English education.This paper first summarizes the significance of cross-cultural integration into college English education and then points out the serious phenomenon of Chinese cultural aphasia.Next,the paper focuses on English education,using English textbooks as a starting point to explore and integrate strategies related to excellent traditional Chinese culture from the Guangdong Maritime Silk Road.By integrating traditional Chinese culture into business English classes(with the Guangdong Maritime Silk Road as an example),the study explores the influence of such cultural integration on students’cross-cultural communication skills,cultural identity,and learning effects.The results showed that the P value of the experimental group and the control group was<0.05,that is,cultural integration had a positive effect on improving the effect of cross-cultural English education.The overall scores and cultural confidence of the experimental group are higher than those of the control group,which proves that cross-cultural teaching has a positive effect on the improvement of students’scores.
基金supported by the Haihe Laboratory of Cell Ecosystem Innovation Foundation,No.22HHXBSS00047(to PL)Graduate Science and Technology Innovation Project of Tianjin,No.2022BKY173(to LZ)Tianjin Municipal Science and Technology Bureau Foundation,No.20201194(to PL).
文摘With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota,microbial metabolites,and the functions of astrocytes.The microbiota–gut–brain axis has been the focus of multiple studies and is closely associated with cognitive function.This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases.This article also summarizes the gut microbiota components that affect astrocyte function,mainly through the vagus nerve,immune responses,circadian rhythms,and microbial metabolites.Finally,this article summarizes the mechanism by which the gut microbiota–astrocyte axis plays a role in Alzheimer’s and Parkinson’s diseases.Our findings have revealed the critical role of the microbiota–astrocyte axis in age-related cognitive decline,aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition.
基金Supported by Beijing Municipal Commission of Education,No.SM202214075001。
文摘BACKGROUND Adult-onset Still's disease(AOSD)is a rare autoinflammatory disease charac-terized by nonspecific symptoms such as fever,rash,sore throat and arthralgia.This paper reports a clinical case of AOSD successfully treated with Bo’s abdo-minal acupuncture(BAA).CASE SUMMARY We report a 20-year-old man who suffered from cold exposure,presenting with high fever,rash,sore throat,arthralgia,and elevated erythrocyte sedimentation rate,leukocytosis with neutrophilic predominance,elevated ferritin,elevated C-reactive protein,and negative rheumatoid factors.He was diagnosed with AOSD based on the Yamaguchi criteria.After treatment with traditional Chinese medi-cine(TCM)decoction and prednisone acetate tablets,there was some alleviation of sore throat,joint and muscle pain,and fever,but he still had persistent low-grade fever,rash,sore throat and arthralgia.He went to the TCM acupuncture outpatient department to receive BAA.Abdominal acupoints Zhongwan(CV12),Xiawan(CV10),0.5 cm below Xiawan(CV10),Qihai(CV6),Guanyuan(CV4),bilateral Qixue(KI13),bilateral Huaroumen(ST24),bilateral Shangfengshidian(AB1)and bilateral Daheng(SP15)were selected.After 3 months treatment,all symptoms disappeared,and the laboratory examination returned to normal levels.He did not take glucocorticoids or nonsteroidal anti-inflammatory drugs afterwards,and no relapse was observed during the 3-year follow-up period.CONCLUSION BAA can be used as a complementary medical approach for treatment of AOSD.
基金supported by a Presidential Postdoctoral Fellowship (021229-00001) from Nanyang Technological University,Singapore (to JZ)a Lee Kong Chian School of Medicine Dean’s Postdoctoral Fellowship (021207-00001) from NTU Singaporea Mistletoe Research Fellowship (022522-00001) from the Momental Foundaton,USA (to CHL)
文摘The interaction between metabolic dysfunction and inflammation is central to the development of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.Obesity-related conditions like type 2 diabetes and non-alcoholic fatty liver disease exacerbate this relationship.Peripheral lipid accumulation,particularly in the liver,initiates a cascade of inflammatory processes that extend to the brain,influencing critical metabolic regulatory regions.Ceramide and palmitate,key lipid components,along with lipid transporters lipocalin-2 and apolipoprotein E,contribute to neuroinflammation by disrupting blood–brain barrier integrity and promoting gliosis.Peripheral insulin resistance further exacerbates brain insulin resistance and neuroinflammation.Preclinical interventions targeting peripheral lipid metabolism and insulin signaling pathways have shown promise in reducing neuroinflammation in animal models.However,translating these findings to clinical practice requires further investigation into human subjects.In conclusion,metabolic dysfunction,peripheral inflammation,and insulin resistance are integral to neuroinflammation and neurodegeneration.Understanding these complex mechanisms holds potential for identifying novel therapeutic targets and improving outcomes for neurodegenerative diseases.
基金supported by the National Natural Science Foundation of China,Nos.32070534(to WY),32370567(to WY),82371874(to XL),81830032(to XL),82071421(to SL)Key Field Research and Development Program of Guangdong Province,No.2018B030337001(to XL)+2 种基金Guangzhou Key Research Program on Brain Science,No.202007030008(to XL)Department of Science and Technology of Guangdong Province,Nos.2021ZT09Y007,2020B121201006(to XL)Guangdong Basic and Applied Basic Research Foundation,Nos.2022A1515012301(to WY),2023B1515020031(to WY).
文摘The vast majority of in vitro studies have demonstrated that PINK1 phosphorylates Parkin to work together in mitophagy to protect against neuronal degeneration.However,it remains largely unclear how PINK1 and Parkin are expressed in mammalian brains.This has been difficult to address because of the intrinsically low levels of PINK1 and undetectable levels of phosphorylated Parkin in small animals.Understanding this issue is critical for elucidating the in vivo roles of PINK1 and Parkin.Recently,we showed that the PINK1 kinase is selectively expressed as a truncated form(PINK1–55)in the primate brain.In the present study,we used multiple antibodies,including our recently developed monoclonal anti-PINK1,to validate the selective expression of PINK1 in the primate brain.We found that PINK1 was stably expressed in the monkey brain at postnatal and adulthood stages,which is consistent with the findings that depleting PINK1 can cause neuronal loss in developing and adult monkey brains.PINK1 was enriched in the membrane-bound fractionations,whereas Parkin was soluble with a distinguishable distribution.Immunofluorescent double staining experiments showed that PINK1 and Parkin did not colocalize under physiological conditions in cultured monkey astrocytes,though they did colocalize on mitochondria when the cells were exposed to mitochondrial stress.These findings suggest that PINK1 and Parkin may have distinct roles beyond their well-known function in mitophagy during mitochondrial damage.
基金supported by the Science and Technology(S&T)Program of Hebei Province,No.22377798D(to YZ).
文摘Parkinson’s disease is the second most common progressive neurodegenerative disorder,and few reliable biomarkers are available to track disease progression.The proteins,DNA,mRNA,and lipids carried by exosomes reflect intracellular changes,and thus can serve as biomarkers for a variety of conditions.In this study,we investigated alterations in the protein content of plasma exosomes derived from patients with Parkinson’s disease and the potential therapeutic roles of these proteins in Parkinson’s disease.Using a tandem mass tag-based quantitative proteomics approach,we characterized the proteomes of plasma exosomes derived from individual patients,identified exosomal protein signatures specific to patients with Parkinson’s disease,and identified N-acetyl-alpha-glucosaminidase as a differentially expressed protein.N-acetyl-alpha-glucosaminidase expression levels in exosomes from the plasma of patients and healthy controls were validated by enzyme-linked immunosorbent assay and western blot.The results demonstrated that the exosomal N-acetyl-alpha-glucosaminidase concentration was not only lower in Parkinson’s disease,but also decreased with increasing Hoehn-Yahr stage,suggesting that N-acetyl-alpha-glucosaminidase could be used to rapidly evaluate Parkinson’s disease severity.Furthermore,western blot and immunohistochemistry analysis showed that N-acetyl-alpha-glucosaminidase levels were markedly reduced both in cells treated with 1-methyl-4-phenylpyridinium and cells overexpressingα-synuclein compared with control cells.Additionally,N-acetyl-alpha-glucosaminidase overexpression significantly increased cell viability and inhibitedα-synuclein expression in 1-methyl-4-phenylpyridinium-treated cells.Taken together,our findings demonstrate for the first time that exosomal N-acetyl-alpha-glucosaminidase may serve as a biomarker for Parkinson’s disease diagnosis,and that N-acetyl-alpha-glucosaminidase may reduceα-synuclein expression and 1-methyl-4-phenylpyridinium-induced neurotoxicity,thus providing a new therapeutic target for Parkinson’s disease.
基金supported by the National Natural Science Foundation of China(Youth Science Fund Project),No.81901292(to GC)the National Key Research and Development Program of China,No.2021YFC2502100(to GC)the National Natural Science Foundation of China,No.82071183(to ZZ).
文摘Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function.Increasing amounts of evidence highlight several key points:(1)Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer’s disease and Parkinson’s disease,and potentially,similar alterations occur in humans.(2)Genetic mutations of Netrin-1 receptors increase an individuals’susceptibility to neurodegenerative disorders.(3)Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function.(4)Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers.These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases.Through a comprehensive review of Netrin-1 signaling pathways,our objective is to uncover potential therapeutic avenues for neurodegenerative disorders.
基金supported by the National Natural Science Foundation of China,No.82101340(to FJ).
文摘Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular degradation pathways,the autophagy-lysosome pathway plays an important role in eliminating these proteins.Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance ofα-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson’s disease.Moreover,multiple genes associated with the pathogenesis of Parkinson’s disease are intimately linked to alterations in the autophagy-lysosome pathway.Thus,this pathway appears to be a promising therapeutic target for treatment of Parkinson’s disease.In this review,we briefly introduce the machinery of autophagy.Then,we provide a description of the effects of Parkinson’s disease–related genes on the autophagy-lysosome pathway.Finally,we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy–lysosome pathway and their applications in Parkinson’s disease.
基金Supported by Natural Science Foundation of Anhui Medical University,No.2023xkj130.
文摘BACKGROUND Mucosal healing(MH)is the major therapeutic target for Crohn's disease(CD).As the most commonly involved intestinal segment,small bowel(SB)assessment is crucial for CD patients.Yet,it poses a significant challenge due to its limited accessibility through conventional endoscopic methods.AIM To establish a noninvasive radiomic model based on computed tomography enterography(CTE)for MH assessment in SBCD patients.METHODS Seventy-three patients diagnosed with SBCD were included and divided into a training cohort(n=55)and a test cohort(n=18).Radiomic features were obtained from CTE images to establish a radiomic model.Patient demographics were analysed to establish a clinical model.A radiomic-clinical nomogram was constructed by combining significant clinical and radiomic features.The diagnostic efficacy and clinical benefit were evaluated via receiver operating characteristic(ROC)curve analysis and decision curve analysis(DCA),respectively.RESULTS Of the 73 patients enrolled,25 patients achieved MH.The radiomic-clinical nomogram had an area under the ROC curve of 0.961(95%confidence interval:0.886-1.000)in the training cohort and 0.958(0.877-1.000)in the test cohort and provided superior clinical benefit to either the clinical or radiomic models alone,as demonstrated by DCA.CONCLUSION These results indicate that the CTE-based radiomic-clinical nomogram is a promising imaging biomarker for MH and serves as a potential noninvasive alternative to enteroscopy for MH assessment in SBCD patients.
基金supported by the Natural Science Foundation of Shanghai,No.22ZR147750Science and Technology Innovation Action Plan of Shanghai Science and Technology Commission,No.23Y11906600Shanghai Changzheng Hospital Innovative Clinical Research Project,No.2020YLCYJ-Y02(all to YY).
文摘Alzheimer’s disease is a debilitating,progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins,including amyloid plaques and intracellular tau tangles,primarily within the brain.Lysosomes,crucial intracellular organelles responsible for protein degradation,play a key role in maintaining cellular homeostasis.Some studies have suggested a link between the dysregulation of the lysosomal system and pathogenesis of neurodegenerative diseases,including Alzheimer’s disease.Restoring the normal physiological function of lysosomes hold the potential to reduce the pathological burden and improve the symptoms of Alzheimer’s disease.Currently,the efficacy of drugs in treating Alzheimer’s disease is limited,with major challenges in drug delivery efficiency and targeting.Recently,nanomaterials have gained widespread use in Alzheimer’s disease drug research owing to their favorable physical and chemical properties.This review aims to provide a comprehensive overview of recent advances in using nanomaterials(polymeric nanomaterials,nanoemulsions,and carbon-based nanomaterials)to enhance lysosomal function in treating Alzheimer’s disease.This review also explores new concepts and potential therapeutic strategies for Alzheimer’s disease through the integration of nanomaterials and modulation of lysosomal function.In conclusion,this review emphasizes the potential of nanomaterials in modulating lysosomal function to improve the pathological features of Alzheimer’s disease.The application of nanotechnology to the development of Alzheimer’s disease drugs brings new ideas and approaches for future treatment of this disease.
基金supported by the National Natural Science Foundation of China,No.82271214(to ZY)the Natural Science Foundation of Hubei Province of China,No.2022CFB109(to ZY)。
文摘Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments.The current therapeutic strategies,primarily based on cholinesterase inhibitors and N-methyl-Daspartate receptor antagonists,offer limited symptomatic relief without halting disease progression,highlighting an urgent need for novel research directions that address the key mechanisms underlying Alzheimer's disease.Recent studies have provided insights into the critical role of glycolysis,a fundamental energy metabolism pathway in the brain,in the pathogenesis of Alzheimer's disease.Alterations in glycolytic processes within neurons and glial cells,including microglia,astrocytes,and oligodendrocytes,have been identified as significant contributors to the pathological landscape of Alzheimer's disease.Glycolytic changes impact neuronal health and function,thus offering promising targets for therapeutic intervention.The purpose of this review is to consolidate current knowledge on the modifications in glycolysis associated with Alzheimer's disease and explore the mechanisms by which these abnormalities contribute to disease onset and progression.Comprehensive focus on the pathways through which glycolytic dysfunction influences Alzheimer's disease pathology should provide insights into potential therapeutic targets and strategies that pave the way for groundbreaking treatments,emphasizing the importance of understanding metabolic processes in the quest for clarification and management of Alzheimer's disease.