Qimin Yaoshu( Important Arts for the People's Welfare) made a detailed record of the diet and its production methods in the middle and lower reaches of the Yellow River during the Wei Dynasty.Hu foods are importan...Qimin Yaoshu( Important Arts for the People's Welfare) made a detailed record of the diet and its production methods in the middle and lower reaches of the Yellow River during the Wei Dynasty.Hu foods are important parts in the book.Hu foods recorded in Important Arts for the People's Welfare mainly include cheese products,cake products,and dish products.These contents not only reflect the exchange of diet culture between different nationalities in the middle and lower reaches of the Yellow River during this period,but also reflect the breadth and depth of ethnic exchanges and integration in this period.展开更多
It is known that exp [iA (Q] P1 - i/2)] is a unitary single-mode squeezing operator, where Q1, P1 are the coordinate and momentum operators, respectively. In this paper we employ Dirac's coordinate representation t...It is known that exp [iA (Q] P1 - i/2)] is a unitary single-mode squeezing operator, where Q1, P1 are the coordinate and momentum operators, respectively. In this paper we employ Dirac's coordinate representation to prove that the exponential operator Sn ≡exp[iλi=1∑n(QiPi+1+Qi+1Pi))],(Qn+1=Q1,Pn+1=P1),is an n-mode squeezing operator which enhances the standard squeezing. By virtue of the technique of integration within an ordered product of operators we derive Sn's normally ordered expansion and obtain new n-mode squeezed vacuum states, its Wigner function is calculated by using the Weyl ordering invariance under similar transformations.展开更多
By introducing the s-parameterized generalized Wigner operator into phase-space quantum mechanics we invent the technique of integration within s-ordered product of operators (which considers normally ordered, antino...By introducing the s-parameterized generalized Wigner operator into phase-space quantum mechanics we invent the technique of integration within s-ordered product of operators (which considers normally ordered, antinormally ordered and Weyl ordered product of operators as its special cases). The s-ordered operator expansion (denoted by s…s ) formula of density operators is derived, which isρ=2/1-s∫d^2β/π〈-β|ρ|β〉sexp{2/s-1(s|β|^2-β*α+βa-αα)}s The s-parameterized quantization scheme is thus completely established.展开更多
Based on the theory of integration within s-ordering of operators and the bipartite entangled state representation we introduce s-parameterized Weyl-Wigner correspondence in the entangled form. Some of its application...Based on the theory of integration within s-ordering of operators and the bipartite entangled state representation we introduce s-parameterized Weyl-Wigner correspondence in the entangled form. Some of its applications in quantum optics theory are presented as well.展开更多
文摘Qimin Yaoshu( Important Arts for the People's Welfare) made a detailed record of the diet and its production methods in the middle and lower reaches of the Yellow River during the Wei Dynasty.Hu foods are important parts in the book.Hu foods recorded in Important Arts for the People's Welfare mainly include cheese products,cake products,and dish products.These contents not only reflect the exchange of diet culture between different nationalities in the middle and lower reaches of the Yellow River during this period,but also reflect the breadth and depth of ethnic exchanges and integration in this period.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10775097 and 10874174)the Research Foundation of the Education Department of Jiangxi Province of China
文摘It is known that exp [iA (Q] P1 - i/2)] is a unitary single-mode squeezing operator, where Q1, P1 are the coordinate and momentum operators, respectively. In this paper we employ Dirac's coordinate representation to prove that the exponential operator Sn ≡exp[iλi=1∑n(QiPi+1+Qi+1Pi))],(Qn+1=Q1,Pn+1=P1),is an n-mode squeezing operator which enhances the standard squeezing. By virtue of the technique of integration within an ordered product of operators we derive Sn's normally ordered expansion and obtain new n-mode squeezed vacuum states, its Wigner function is calculated by using the Weyl ordering invariance under similar transformations.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10775097 and 10874174)
文摘By introducing the s-parameterized generalized Wigner operator into phase-space quantum mechanics we invent the technique of integration within s-ordered product of operators (which considers normally ordered, antinormally ordered and Weyl ordered product of operators as its special cases). The s-ordered operator expansion (denoted by s…s ) formula of density operators is derived, which isρ=2/1-s∫d^2β/π〈-β|ρ|β〉sexp{2/s-1(s|β|^2-β*α+βa-αα)}s The s-parameterized quantization scheme is thus completely established.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10775097 and 10874174)the President Foundation of the Chinese Academy of Sciences
文摘Based on the theory of integration within s-ordering of operators and the bipartite entangled state representation we introduce s-parameterized Weyl-Wigner correspondence in the entangled form. Some of its applications in quantum optics theory are presented as well.