期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Guidance Control for Parallel Parking Tasks 被引量:8
1
作者 Jiyuan Tan Chunling Xu +3 位作者 Li Li Fei-Yue Wang Dongpu Cao Lingxi Li 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第1期301-306,共6页
Parking into small berths remains difficult for unskilled drivers. Researchers had proposed different automatic parking systems to solve this problem. The first kind of strategies(called parking trajectory planning) d... Parking into small berths remains difficult for unskilled drivers. Researchers had proposed different automatic parking systems to solve this problem. The first kind of strategies(called parking trajectory planning) designs a detailed reference trajectory that links the start and ending points of a special parking task and let the vehicle track this reference trajectory so as to park into the berth. The second kind of strategies(called guidance control) just characterizes several regimes of driving actions as well as the important switching points in certain rule style and let the vehicle follows the pre-selected series of actions so as to park into the berth. Parking guidance control is simpler than parking trajectory planning. However, no studies thoroughly validated parking guidance control before. In this paper, a new automatic parking method is presented, which could characterize the desired control actions directly. Then the feasibility is examined carefully. Tests show that a simple parking guidance control strategy can work in most parallel parking tasks, if the available parking berth is not too small. This finding helps to build more concise automatic parking systems that can efficiently guide human drivers. 展开更多
关键词 Index Terms—Automatic parking guidance control trajectory planning.
下载PDF
Command filtered integrated estimation guidance and control for strapdown missiles with circular field of view
2
作者 Wei Wang Jiaqi Liu +2 位作者 Shiyao Lin Baokui Geng Zhongjiao Shi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期211-221,共11页
In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated... In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets. 展开更多
关键词 Integrated estimation guidance and control Circular field-of-view Time-varying integral barrier Lyapunov function Command filtered backstepping control Nonlinear adaptive control Extended state observer
下载PDF
Integrated guidance and control design for missile with terminal impact angle constraint based on sliding mode control 被引量:21
3
作者 Peng Wu Ming Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第4期623-628,共6页
Aimed at the guidance requirements of some missiles which attack targets with terminal impact angle at the terminal point,a new integrated guidance and control design scheme based on variable structure control approac... Aimed at the guidance requirements of some missiles which attack targets with terminal impact angle at the terminal point,a new integrated guidance and control design scheme based on variable structure control approach for missile with terminal impact angle constraint is proposed.First,a mathematical model of an integrated guidance and control model in pitch plane is established,and then nonlinear transformation is employed to transform the mathematical model into a standard form suitable for sliding mode control method design.A sufficient condition for the existence of linear sliding surface is given in terms of linear matrix inequalities(LMIs),based on which the corresponding reaching motion controller is also developed.To verify the effectiveness of the proposed integrated design scheme,the numerical simulation of missile is made.The simulation results demonstrate that the proposed guidance and control law can guide missile to hit the target with desired impact angle and desired flight attitude angle simultaneously. 展开更多
关键词 guidance terminal impact angle sliding mode control integrated guidance and control linear matrix inequality(LMI).
下载PDF
Adaptive Dynamic Surface Control for Integrated Missile Guidance and Autopilot 被引量:17
4
作者 Ming-Zhe Hou Guang-Ren Duan 《International Journal of Automation and computing》 EI 2011年第1期122-127,共6页
Integrated guidance and control for homing missiles utilizing adaptive dynamic surface control approach is considered based on the three channels independence design idea. A time-varying integrated guidance and contro... Integrated guidance and control for homing missiles utilizing adaptive dynamic surface control approach is considered based on the three channels independence design idea. A time-varying integrated guidance and control model with unmatched uncertainties is first formulated for the pitch channel, and an adaptive dynamic surface control algorithm is further developed to deal with these unmatched uncertainties. It is proved that the proposed feedback controller can ensure not only the accuracy of target interception, but also the stability of the missile dynamics. Then, the same control approach is further applied to the control design of the yaw and roll channels. The 6-degree-of-freedom (6-DOF) nonlinear missile simulation results demonstrate the feasibility and advantage of the proposed integrated guidance and control design scheme. 展开更多
关键词 Integrated guidance and control unmatched uncertainty adaptive control dynamic surface control homing missiles.
下载PDF
Integrated guidance and control of guided projectile with multiple constraints based on fuzzy adaptive and dynamic surface 被引量:6
5
作者 Shang Jiang Fu-qing Tian +1 位作者 Shi-yan Sun Wei-ge Liang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第6期1130-1141,共12页
Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic character... Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic characteristics,and multiple constraints,such as impact angle,limited measurement of line of sight(LOS)angle rate and nonlinear saturation of canard deflection.Initially,a strict feedback cascade model of IGC in longitudinal plane was established,and extended state observer(ESO)was designed to estimate LOS angle rate and uncertain disturbances with unknown boundary inside and outside of system,including aerodynamic parameters perturbation,target maneuver and model errors.Secondly,aiming at zeroing LOS angle tracking error and LOS angle rate in finite time,a nonsingular terminal sliding mode(NTSM)was designed with adaptive exponential reaching law.Furthermore,combining with dynamic surface,which prevented the complex differential of virtual control laws,the fuzzy adaptive systems were designed to approximate observation errors of uncertain disturbances and to reduce chatter of control law.Finally,the adaptive Nussbaum gain function was introduced to compensate nonlinear saturation of canard deflection.The LOS angle tracking error and LOS angle rate were convergent in finite time and whole system states were uniform ultimately bounded,rigorously proven by Lyapunov stability theory.Hardware-in-the-loop simulation(HILS)and digital simulation experiments both showed FADS provided guided projectile with good guidance performance while striking targets with different maneuvering forms. 展开更多
关键词 Integrated guidance and control Multiple constraints Fuzzy adaptive Dynamic surface Nonsingular terminal sliding mode Extended state observer
下载PDF
Integrated guidance and control design of the suicide UCAV for terminal attack 被引量:2
6
作者 Huan Zhou Hui Zhao +1 位作者 Hanqiao Huang Xin Zhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第3期546-555,共10页
A novel integrated guidance and control (IGC) design method is proposed to solve problems of low control accuracy for a suicide unmanned combat aerial vehicle (UCAV) in the terminal attack stage. First of all, the IGC... A novel integrated guidance and control (IGC) design method is proposed to solve problems of low control accuracy for a suicide unmanned combat aerial vehicle (UCAV) in the terminal attack stage. First of all, the IGC system model of the UCAV is built based on the three-channel independent design idea, which reduces the difficulties of designing the controller. Then, IGC control laws are designed using the trajectory linearization control (TLC). A nonlinear disturbance observer (NDO) is introduced to the IGC controller to reject various uncertainties, such as the aerodynamic parameter perturbation and the measurement error interference. The stability of the closed-loop system is proven by using the Lyapunov theorem. The performance of the proposed IGC design method is verified in a terminal attack mission of the suicide UCAV. Finally, simulation results demonstrate the superiority and effectiveness in the aspects of guidance accuracy and system robustness. 展开更多
关键词 integrated guidance and control (IGC) unmanned combat aerial vehicle (UCAV) trajectory linearization control (TLC) terminal attack nonlinear disturbance observer (NDO)
下载PDF
Fuzzy sliding mode control guidance law with terminal impact angle and acceleration constraints 被引量:6
7
作者 Qingchun Li Wensheng Zhang +1 位作者 Gang Han Yuan Xie 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第3期664-679,共16页
In this paper, a novel fuzzy sliding mode control(FSMC) guidance law with terminal constraints of miss distance, impact angle and acceleration is presented for a constant speed missile against the stationary or slow... In this paper, a novel fuzzy sliding mode control(FSMC) guidance law with terminal constraints of miss distance, impact angle and acceleration is presented for a constant speed missile against the stationary or slowly moving target. The proposed guidance law combines the sliding mode control algorithm with a fuzzy logic control scheme for the lag-free system and the first-order lag system. Through using Lyapunov stability theory, we prove the sliding surface converges to zero in finite time. Furthermore, considering the uncertain information and system disturbances, the guidance gains are on-line optimized by fuzzy logic technique. Numerical simulations are performed to demonstrate the performance of the FSMC guidance law and the results illustrate the validity and effectiveness of the proposed guidance law. 展开更多
关键词 guidance law sliding mode control fuzzy logic impact angle
下载PDF
Integrated guidance and control design method based on finite-time state observer 被引量:1
8
作者 MA Ping ZHANG Denghui +1 位作者 WANG Songyan CHAO Tao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1251-1262,共12页
A composited integrated guidance and control(IGC) algorithm is presented to tackle the problem of the IGC design in the dive phase for the bank-to-turn(BTT) vehicle with the inaccuracy information of the line-of-sight... A composited integrated guidance and control(IGC) algorithm is presented to tackle the problem of the IGC design in the dive phase for the bank-to-turn(BTT) vehicle with the inaccuracy information of the line-of-sight(LOS) rate. For the sake of theoretical derivation, an IGC model in the pitch plane is established. The high-order finite-time state observer(FTSO), with the LOS angle as the single input, is employed to reconstruct the states of the system online. Besides, a composited IGC algorithm is presented via the fusion of back-stepping and dynamic inverse. Compared with the traditional IGC algorithm, the proposed composited IGC method can attenuate effectively the design conservation of the flight control system, while the LOS rate is mixed with noise. Extensive experiments have been performed to demonstrate that the proposed approach is globally finite-time stable and strongly robust against parameter uncertainty. 展开更多
关键词 integrated guidance and control(IGC) finite-time state observer(FTSO) back-to-turn(BTT) vehicle composited control
下载PDF
Data fusion control and guidance of surface-to-air missile under the complex circumstance based on neural-net technology
9
作者 Zhou Deyun Zhou Feng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期996-1002,共7页
Under the complicated electromagnetism circumstance, the model of data fusion control and guidance of surface-to-air missile weapon systems is established. Such ways and theories as Elman-NN, radar tracking and filter... Under the complicated electromagnetism circumstance, the model of data fusion control and guidance of surface-to-air missile weapon systems is established. Such ways and theories as Elman-NN, radar tracking and filter's data fusion net based on the group method for data-processing (GMRDF) are applied to constructing the model of data fusion. The highly reliable state estimation of the tracking targets and the improvement in accuracy of control and guidance are obtained. The purpose is optimization design of data fusion control and guidance of surface-to-air missile weapon systems and improving the fighting effectiveness of surface-to-air missile weapon systems. 展开更多
关键词 surface-to-air missile FUSION neural net GMDH control and guidance.
下载PDF
Remote Control Guidance Law Design Using Variable Structure Control
10
作者 孟秀云 王奇 《Journal of Beijing Institute of Technology》 EI CAS 2006年第1期81-84,共4页
A method of sliding mode variable structure control for the missile body being a time varying system is presented. A remote control guidance law is designed. The method has strong robustness to target' s maneuver. To... A method of sliding mode variable structure control for the missile body being a time varying system is presented. A remote control guidance law is designed. The method has strong robustness to target' s maneuver. To reduce the chattering phenomena, quasi-sliding mode variable structure control method is used. Simulation results show that the proposed method has small miss distance for any kind of maneuvering targets and requires small control energy. 展开更多
关键词 remote control guidance law variable structure control sliding mode reaching mode
下载PDF
Terminal Angular Constraint Integrated Guidance and Control for Flexible Hypersonic Vehicle with Dead-Zone Input Nonlinearity
11
作者 Hewei Zhao 《Journal of Beijing Institute of Technology》 EI CAS 2020年第4期489-503,共15页
This paper presents an integrated guidance and control model for a flexible hypersonic vehicle with terminal angular constraints.The integrated guidance and control model is bounded and the dead-zone input nonlinearit... This paper presents an integrated guidance and control model for a flexible hypersonic vehicle with terminal angular constraints.The integrated guidance and control model is bounded and the dead-zone input nonlinearity is considered in the system dynamics.The line of sight angle,line of sight angle rate,attack angle and pitch rate are involved in the integrated guidance and control system.The controller is designed with a backstepping method,in which a first order filter is employed to avoid the differential explosion.The full tuned radial basis function(RBF)neural network(NN)is used to approximate the system dynamics with robust item coping with the reconstruction errors,the exactitude model requirement is reduced in the controller design.In the last step of backstepping method design,the adaptive control with Nussbaum function is used for the unknown dynamics with a time-varying control gain function.The uniform ultimate boundedness stability of the control system is proved.The simulation results validate the effectiveness of the controller design. 展开更多
关键词 hypersonic vehicle terminal angular constraint dead-zone input nonlinearity full tuned radial basis function(RBF)neural network(NN) integrated guidance and control
下载PDF
Effect of Autopilot Structure on Proportional Navigation Guidance
12
作者 夏群力 刘轶英 祁载康 《Journal of Beijing Institute of Technology》 EI CAS 2007年第2期177-181,共5页
The dynamic characteristics of acceleration autopilot and attitude autopilot are discu.ssed in detail. Also, a comparison study was made between these two different types of control schemes for guidance loop. By means... The dynamic characteristics of acceleration autopilot and attitude autopilot are discu.ssed in detail. Also, a comparison study was made between these two different types of control schemes for guidance loop. By means of simulation, it is concluded that the guidance accuracy is mainly determined by the slowest subsystem among different system dynamics. For air-to-ground missiles, with limited terminal guidance time, the control scheme of acceleration autopilot combined with proportional navigation guidance (PNG) law is the better choice. 展开更多
关键词 AUTOPILOT guidance law guidance and control guidance accuracy
下载PDF
A NEW EFFICIENT METHOD TO BOUNDARY VALUE PROBLEM FOR BALLISTIC ROCKET GUIDANCE
13
作者 刘新建 袁天保 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第10期1375-1381,共7页
The exploitation of rocket guidance technology on the basis of the guidance law of Space Shuttle and Pegasus rocket was performed. A new efficient method of numerical iteration solution to the boundary value problem w... The exploitation of rocket guidance technology on the basis of the guidance law of Space Shuttle and Pegasus rocket was performed. A new efficient method of numerical iteration solution to the boundary value problem was put forward. The numerical simulation results have shown that the method features good performances of stability, robustness, high precision, and algebraic formulas in real computation. By virtue of modern DSP (digital signal processor ) high speed chip technology, the algorithm can be used in real time and can adaot to the requirements of the big primary bias of rocket guidance. 展开更多
关键词 rocket guidance and control bounoary value problem numerical iteration
下载PDF
Development of A Three-Dimensional Guidance System for Long-Range Maneuvering of A Miniature Autonomous Underwater Vehicle
14
作者 Mansour ATAEI Aghil YOUSEFI-KOMA 《China Ocean Engineering》 SCIE EI CSCD 2014年第6期843-856,共14页
The present paper introduces a three-dimensional guidance system developed for a miniature Autonomous Underwater Vehicle(AUV). The guidance system determines the best trajectory for the vehicle based on target behav... The present paper introduces a three-dimensional guidance system developed for a miniature Autonomous Underwater Vehicle(AUV). The guidance system determines the best trajectory for the vehicle based on target behavior and vehicle capabilities. The dynamic model of this novel AUV is derived based on its special characteristics such as the horizontal posture and the independent diving mechanism. To design the guidance strategy, the main idea is to select the desired depth, presumed proportional to the horizontal distance of the AUV and the target. By connecting the two with a straight line, this strategy helps the AUV move in a trajectory sufficiently close to this line. The adjacency of the trajectory to the line leads to reasonably short travelling distances and avoids unsafe areas. Autopilots are designed using sliding mode controller. Two different engagement geometries are considered to evaluate the strategy's performance: stationary target and moving target. The simulation results show that the strategy can provide sufficiently fast and smooth trajectories in both target situations. 展开更多
关键词 Autonomous Underwater Vehicle(AUV) Three-Dimensional(3D) guidance system Line-of-Sight(LOS) strategy autopilot sliding mode controller
下载PDF
攻击地面固定目标寻的导弹的一体化制导与控制(英文) 被引量:23
15
作者 侯明哲 段广仁 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第2期162-168,共7页
This paper presents a scheme of integrated guidance and autopilot design for homing missiles against ground fixed targets. An integrated guidance and control model in the pitch plane is formulated and further changed ... This paper presents a scheme of integrated guidance and autopilot design for homing missiles against ground fixed targets. An integrated guidance and control model in the pitch plane is formulated and further changed into a normal form by nonlinear coordinate transformation. By adopting the sliding mode control approach, an adaptive nonlinear control law of the system is designed so that the missile can hit the target accurately with a desired impact attitude angle. The stability analysis of the closed-loop system is also conducted. The numerical simulation has confirmed the usefulness of the proposed design scheme. 展开更多
关键词 integrated guidance and control pitch plane ground fixed target NONLINEAR ADAPTIVE
下载PDF
Integrated method of guidance,control and morphing for hypersonic morphing vehicle in glide phase 被引量:19
16
作者 Cunyu BAO Peng WANG Guojian 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第5期535-553,共19页
The morphing technology of hypersonic vehicle improved the flight performance by changing aerodynamic characteristics with shape deformations,but the design of guidance and control system with morphing laws remained t... The morphing technology of hypersonic vehicle improved the flight performance by changing aerodynamic characteristics with shape deformations,but the design of guidance and control system with morphing laws remained to be explored.An Integrated of Guidance,Control and Morphing(IGCM)method for Hypersonic Morphing Vehicle(HMV)was developed in this paper.The IGCM method contributed to an effective solution of morphing characteristic to improve flight performance and reject the disturbance for guidance and control system caused by the morphing system for HMV in gliding phase.The IGCM models were established based on the motion models and aerodynamic models of the variable span vehicle.Then the IGCM method was designed by adaptive block dynamic surface back-stepping method with stability proof.The parallel controlled simulations’results showed the effectiveness in accomplishing the flight mission of IGCM method in glide phase with smaller terminal errors.The velocity loss of HMV was reduced by 32.8%which inferred less flight time and larger terminal flight velocity than invariable span vehicle.Under the condition of large deviations of aerodynamic parameters and atmospheric density,the robustness of IGCM method with variable span was verified. 展开更多
关键词 Adaptive dynamic surface Glide phase Hypersonic morphing vehicle Integrated guidance control and morphing method Variable span
原文传递
Backstepping design of missile guidance and control based on adaptive fuzzy sliding mode control 被引量:32
17
作者 Ran Maopeng Wang Qing +1 位作者 Hou Delong Dong Chaoyang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第3期634-642,共9页
This paper presents an integrated missile guidance and control law based on adaptive fuzzy sliding mode control. The integrated model is formulated as a block-strict-feedback nonlinear system, in which modeling errors... This paper presents an integrated missile guidance and control law based on adaptive fuzzy sliding mode control. The integrated model is formulated as a block-strict-feedback nonlinear system, in which modeling errors, unmodeled nonlinearities, target maneuvers, etc. are viewed as unknown uncertainties. The adaptive nonlinear control law is designed based on backstepping and sliding mode control techniques. An adaptive fuzzy system is adopted to approximate the coupling nonlinear functions of the system, and for the uncertainties, we utilize an online-adaptive control law to estimate the unknown parameters. The stability analysis of the closed-loop system is also conducted. Simulation results show that, with the application of the adaptive fuzzy sliding mode control, small miss distances and smooth missile trajectories are achieved, and the system is robust against system uncertainties and external disturbances. 展开更多
关键词 Adaptive fuzzy system BACKSTEPPING Integrated guidance and control NONLINEAR Sliding mode control
原文传递
Integrated guidance and control design of a flight vehicle with side-window detection 被引量:3
18
作者 Tianyu ZHENG Yu YAO +1 位作者 Fenghua HE Denggao JI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第4期749-764,共16页
This paper considers the guidance and control problem of a flight vehicle with sidewindow detection. In order to guarantee the target remaining in the seeker's sight of view, the line of sight and the attitude of the... This paper considers the guidance and control problem of a flight vehicle with sidewindow detection. In order to guarantee the target remaining in the seeker's sight of view, the line of sight and the attitude of the flight vehicle should be under some constraints caused by the sidewindow, which leads to coupling between the guidance and the attitude dynamics model. To deal with the side-window constraints and the coupling, a novel Integrated Guidance and Control(IGC)design approach is proposed. Firstly, the relative motion equations are derived in the body-Line of Sight(LOS) coordinate system. And the guidance and control problem of the flight vehicle is formulated into an IGC problem with state constraints. Then, based on the singular perturbation method, the IGC problem is decomposed into the control design of the quasi-steady-state subsystem and the boundary-layer subsystem which can be designed separately. Finally, the receding horizon control is applied to the control design for the two subsystems. Simulation results show the effectiveness of the proposed approach. 展开更多
关键词 Integrated guidance and control Receding horizon control Side-window detection Singular perturbation Terminal guidance
原文传递
Integrated guidance and control for damping augmented system via convex optimization 被引量:2
19
作者 Bong-Gyun PARK Tae-Hun KIM 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第7期30-39,共10页
In this paper,an integrated guidance and control approach is presented to improve the performance of the missile interception.The approach includes damping augmented system with attitude rate feedback to decrease the ... In this paper,an integrated guidance and control approach is presented to improve the performance of the missile interception.The approach includes damping augmented system with attitude rate feedback to decrease the oscillation during the homing phase for missiles with low damping.In addition,physical constraints,which can affect the performance of the missile interception,such as acceleration limit,seeker’s look angle,and look angle rate constraints are considered.The integrated guidance and control problem is formulated as a convex quadratic optimization problem with equality and inequality constraints,and the solution is obtained by a primal–dual interior point method.The performance of the proposed method is verified through several numerical examples. 展开更多
关键词 Convex optimization Damping augmented system Integrated guidance and control Physical constraint Primal-dual interior point method
原文传递
Integrated guidance and control with input saturation and disturbance observer 被引量:1
20
作者 Wangkui Liu Yiyin Wei +1 位作者 Guangren Duan Mingzhe Hou 《Journal of Control and Decision》 EI 2018年第3期277-299,共23页
In presence of input saturation,a novel integrated guidance and control(IGC)law based on the backstepping technique is proposed for missiles attacking manoeuvring target in this paper.A modified saturation function an... In presence of input saturation,a novel integrated guidance and control(IGC)law based on the backstepping technique is proposed for missiles attacking manoeuvring target in this paper.A modified saturation function and an auxiliary system are proposed to deal with the input saturation.The state of the auxiliary system is used in the IGC law design process and stability analysis.Considering the uncertainties caused by target manoeuvres,model errors and variation of the aerodynamic parameters,disturbance observers which converge in finite time are introduced to estimate and compensate them.Based on the Lyapunov theory,the detailed stability analysis of the closedloop system is presented.The non-linear numerical simulations are presented to illustrate the effectiveness of the proposed IGC law. 展开更多
关键词 Integrated guidance and control(IGC) input saturation BACKSTEPPING disturbance observer manoeuvring target
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部