By aggregating MODIS(moderate-resolution imaging spectroradiometer) AOD(aerosol optical depth) and OMI(ozone monitoring instrument) UVAI(ultra violet aerosol index)datasets over 2010–2014, it was found that p...By aggregating MODIS(moderate-resolution imaging spectroradiometer) AOD(aerosol optical depth) and OMI(ozone monitoring instrument) UVAI(ultra violet aerosol index)datasets over 2010–2014, it was found that peak aerosol loading in seasonal variation occurred annually in spring over the Gulf of Tonkin(17–23°N, 105–110°E). The vertical structure of the aerosol extinction coefficient retrieved from the spaceborne lidar CALIOP(cloud-aerosol lidar with orthogonal polarization) showed that the springtime peak AOD could be attributed to an abrupt increase in aerosol loading between altitudes of 2 and 5 km.In contrast, aerosol loading in the low atmosphere(below 1 km) was only half of that in winter. Wind fields in the low and high atmosphere exhibited opposite transportation patterns in spring over the Gulf of Tonkin, implying different sources for each level. By comparing the emission inventory of anthropogenic sources with biomass burning, and analyzing the seasonal variation of the vertical structure of aerosols over the Northern Indo-China Peninsula(NIC), it was concluded that biomass burning emissions contributed to high aerosol loading in spring. The relatively high topography and the high surface temperature in spring made planetary boundary layer height greater than 3 km over NIC. In addition, small-scale cumulus convection frequently occurred, facilitating pollutant rising to over 3 km, which was a height favoring long-range transport. Thus, pollutants emitted from biomass burning over NIC in spring were raised to the high atmosphere, then experienced long-range transport, leading to the increase in aerosol loading at high altitudes over the Gulf of Tonkin during spring.展开更多
In the past 20 a, the gulf-scale circulation in the Beibu Gulf has been commonly accepted to be driven by a wind stress or density gradient. However, using three sensitive experiments based on a three-dimensional baro...In the past 20 a, the gulf-scale circulation in the Beibu Gulf has been commonly accepted to be driven by a wind stress or density gradient. However, using three sensitive experiments based on a three-dimensional baroclinic model that was verified by observations, the formation mechanisms were revealed: the circula- tion in the northern Beibu Gulf was triggered by the monsoon wind throughout a year; whereas the southern gulf circulation was driven by the monsoon wind and South China Sea (SCS) circulation in winter and sum- mer, respectively. The force of heat flux and tidal harmonics had a strong effect on the circulation strength and range, as well as the local circulation structures, but these factors did not influence the major circulation structure in the Beibu Gulf. On the other hand, the Beibu Gulf Cold Water Mass (BGCWM) would disappear without the force of heat flux because the seasonal thermocline layer was generated by the input of heat so that the vertical mixing between the upper hot water and lower cold water was blocked. In addition, the wind-induced cyclonic gyre in the northern gulf was favorable to the existence of the BGCWM. However, the coverage area of the BGCWM was increased slightly without the force of the tidal harmonics. When the model was driven by the monthly averaged surface forcing, the circulation structure was changed to some extent, and the coverage area of the BGCWM almost extended outwards 100%, implying the circulation and water mass in the Beibu Gulf had strong responses to the temporal resolution of the surface forces.展开更多
基金supported by the National Science Foundation (No.41575127)the Special Welfare Foundation for Environment Protection (No.201309016)the National Basic Research Foundation for Commonwealth Research Institute (No.GYK5051201)
文摘By aggregating MODIS(moderate-resolution imaging spectroradiometer) AOD(aerosol optical depth) and OMI(ozone monitoring instrument) UVAI(ultra violet aerosol index)datasets over 2010–2014, it was found that peak aerosol loading in seasonal variation occurred annually in spring over the Gulf of Tonkin(17–23°N, 105–110°E). The vertical structure of the aerosol extinction coefficient retrieved from the spaceborne lidar CALIOP(cloud-aerosol lidar with orthogonal polarization) showed that the springtime peak AOD could be attributed to an abrupt increase in aerosol loading between altitudes of 2 and 5 km.In contrast, aerosol loading in the low atmosphere(below 1 km) was only half of that in winter. Wind fields in the low and high atmosphere exhibited opposite transportation patterns in spring over the Gulf of Tonkin, implying different sources for each level. By comparing the emission inventory of anthropogenic sources with biomass burning, and analyzing the seasonal variation of the vertical structure of aerosols over the Northern Indo-China Peninsula(NIC), it was concluded that biomass burning emissions contributed to high aerosol loading in spring. The relatively high topography and the high surface temperature in spring made planetary boundary layer height greater than 3 km over NIC. In addition, small-scale cumulus convection frequently occurred, facilitating pollutant rising to over 3 km, which was a height favoring long-range transport. Thus, pollutants emitted from biomass burning over NIC in spring were raised to the high atmosphere, then experienced long-range transport, leading to the increase in aerosol loading at high altitudes over the Gulf of Tonkin during spring.
基金The Guangxi Natural Science Foundation under contract No.2012GXNSFEA053001the program of"The Beibu Gulf forecast circulation system construction and its application to the coastal pollution transport"
文摘In the past 20 a, the gulf-scale circulation in the Beibu Gulf has been commonly accepted to be driven by a wind stress or density gradient. However, using three sensitive experiments based on a three-dimensional baroclinic model that was verified by observations, the formation mechanisms were revealed: the circula- tion in the northern Beibu Gulf was triggered by the monsoon wind throughout a year; whereas the southern gulf circulation was driven by the monsoon wind and South China Sea (SCS) circulation in winter and sum- mer, respectively. The force of heat flux and tidal harmonics had a strong effect on the circulation strength and range, as well as the local circulation structures, but these factors did not influence the major circulation structure in the Beibu Gulf. On the other hand, the Beibu Gulf Cold Water Mass (BGCWM) would disappear without the force of heat flux because the seasonal thermocline layer was generated by the input of heat so that the vertical mixing between the upper hot water and lower cold water was blocked. In addition, the wind-induced cyclonic gyre in the northern gulf was favorable to the existence of the BGCWM. However, the coverage area of the BGCWM was increased slightly without the force of the tidal harmonics. When the model was driven by the monthly averaged surface forcing, the circulation structure was changed to some extent, and the coverage area of the BGCWM almost extended outwards 100%, implying the circulation and water mass in the Beibu Gulf had strong responses to the temporal resolution of the surface forces.