期刊文献+
共找到1,375篇文章
< 1 2 69 >
每页显示 20 50 100
Immune regulation of the gut-brain axis and lung-brain axis involved in ischemic stroke 被引量:3
1
作者 Xiaodi Xie Lei Wang +2 位作者 Shanshan Dong ShanChun Ge Ting Zhu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期519-528,共10页
Local ischemia often causes a series of inflammatory reactions when both brain immune cells and the peripheral immune response are activated.In the human body,the gut and lung are regarded as the key reactional target... Local ischemia often causes a series of inflammatory reactions when both brain immune cells and the peripheral immune response are activated.In the human body,the gut and lung are regarded as the key reactional targets that are initiated by brain ischemic attacks.Mucosal microorganisms play an important role in immune regulation and metabolism and affect blood-brain barrier permeability.In addition to the relationship between peripheral organs and central areas and the intestine and lung also interact among each other.Here,we review the molecular and cellular immune mechanisms involved in the pathways of inflammation across the gut-brain axis and lung-brain axis.We found that abnormal intestinal flora,the intestinal microenvironment,lung infection,chronic diseases,and mechanical ventilation can worsen the outcome of ischemic stroke.This review also introduces the influence of the brain on the gut and lungs after stroke,highlighting the bidirectional feedback effect among the gut,lungs,and brain. 展开更多
关键词 enteric glia cells gut microbiota gut-brain axis immune response inflammation ischemic stroke lung-brain axis microglia
下载PDF
Gut microbiota-astrocyte axis: new insights into age-related cognitive decline
2
作者 Lan Zhang Jingge Wei +5 位作者 Xilei Liu Dai Li Xiaoqi Pang Fanglian Chen Hailong Cao Ping Lei 《Neural Regeneration Research》 SCIE CAS 2025年第4期990-1008,共19页
With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterati... With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota,microbial metabolites,and the functions of astrocytes.The microbiota–gut–brain axis has been the focus of multiple studies and is closely associated with cognitive function.This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases.This article also summarizes the gut microbiota components that affect astrocyte function,mainly through the vagus nerve,immune responses,circadian rhythms,and microbial metabolites.Finally,this article summarizes the mechanism by which the gut microbiota–astrocyte axis plays a role in Alzheimer’s and Parkinson’s diseases.Our findings have revealed the critical role of the microbiota–astrocyte axis in age-related cognitive decline,aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition. 展开更多
关键词 age aging Alzheimer’s disease ASTROCYTES cognitive decline DEMENTIA gut microbiota gut–brain axis microbial metabolites NEUROINFLAMMATION Parkinson’s disease
下载PDF
Importance of the gut microbiota in the gut-liver axis in normal and liver disease
3
作者 Stanislav Kotlyarov 《World Journal of Hepatology》 2024年第6期878-882,共5页
The gut microbiota is of growing interest to clinicians and researchers.This is because there is a growing understanding that the gut microbiota performs many different functions,including involvement in metabolic and... The gut microbiota is of growing interest to clinicians and researchers.This is because there is a growing understanding that the gut microbiota performs many different functions,including involvement in metabolic and immune processes that are systemic in nature.The liver,with its important role in detoxifying and metabolizing products from the gut,is at the forefront of interactions with the gut microbiota.Many details of these interactions are not yet known to clinicians and researchers,but there is growing evidence that normal gut microbiota function is important for liver health.At the same time,factors affecting the gut microbiota,including nutrition or medications,may also have an effect through the gut-liver axis. 展开更多
关键词 gut microbiota LIVER gut-liver axis IMMUNITY Non-alcoholic fatty liver disease
下载PDF
Elaidic acid-induced intestinal barrier damage led to gut-liver axis derangement and triggered NLRP3 inflammasome in the liver of SD rats
4
作者 Hui Liu Xuenan Li +5 位作者 Lu Li Yucai Li Haiyang Yan Yong Pang Wenliang Li Yuan Yuan 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1279-1291,共13页
Previous studies have shown that trans fatty acids(TFA) are associated with several chronic diseases,the gut microbiota is directly influenced by dietary components and linked to chronic diseases.Our research investig... Previous studies have shown that trans fatty acids(TFA) are associated with several chronic diseases,the gut microbiota is directly influenced by dietary components and linked to chronic diseases.Our research investigated the effects of elaidic acid(EA),a typical TFA,on the gut microbiota to understand the underlying mechanisms of TFA-related chronic diseases.16S rDNA gene sequencing on faecal samples from Sprague-Dawley rats were performed to explore the composition change of the gut microbiota by EA gavage for 4 weeks.The results showed that the intake of EA increased the abundance of well-documented harmful bacteria,such as Proteobacteria,Anaerotruncus,Oscillibacter and Desulfovibrionaceae.Plus,EA induced translocation of lipopolysaccharides(LPS) and the above pathogenic bacteria,disrupted the intestinal barrier,led to gut-liver axis derangement and TLR4 pathway activation in the liver.Overall,EA induced intestinal barrier damage and regulated TLR4-MyD88-NF-κB/MAPK pathways in the liver of SD rats,leading to the activation of NLRP3 inflammasome and inflammatory liver damage. 展开更多
关键词 Elaidic acid(EA) gut microbiota Intestinal barrier gut-liver axis TLR4-MyD88-NF-κB/MAPK pathways NLRP3 inflammasome
下载PDF
Gut Microbiota-brain Axis 被引量:75
5
作者 Hong-Xing Wang Yu-Ping Wang 《Chinese Medical Journal》 SCIE CAS CSCD 2016年第19期2373-2380,共8页
Objective:To systematically review the updated information about the gut microbiota-brain axis.Data Sources:All articles about gut microbiota-brain axis published up to July 18,2016,were identified through a literat... Objective:To systematically review the updated information about the gut microbiota-brain axis.Data Sources:All articles about gut microbiota-brain axis published up to July 18,2016,were identified through a literature search on PubMed,ScienceDirect,and Web of Science,with the keywords of"gut microbiota","gut-brain axis",and "neuroscience".Study Selection:All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed,with no limitation of study design.Results:It is well-recognized that gut microbiota affects the brain&#39;s physiological,behavioral,and cognitive functions although its precise mechanism has not yet been fully understood.Gut microbiota-brain axis may include gut microbiota and their metabolic products,enteric nervous system,sympathetic and parasympathetic branches within the autonomic nervous system,neural-immune system,neuroendocrine system,and central nervous system.Moreover,there may be five communication routes between gut microbiota and brain,including the gut-brain&#39;s neural network,neuroendocrine-hypothalamic-pituitary-adrenal axis,gut immune system,some neurotransmitters and neural regulators synthesized by gut bacteria,and barrier paths including intestinal mucosal barrier and blood-brain barrier.The microbiome is used to define the composition and functional characteristics of gut microbiota,and metagenomics is an appropriate technique to characterize gut microbiota.Conclusions:Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain,which may provide a new way to protect the brain in the near future. 展开更多
关键词 gut Microbiota gut microbiota-brain axis METAGENOMICS MICROBIOME
原文传递
Role of gut microbiota in the pathogenesis and therapeutics of minimal hepatic encephalopathy via the gut-liver-brain axis 被引量:4
6
作者 Ming Luo Rui-Juan Xin +3 位作者 Fang-Rui Hu Li Yao Sheng-Juan Hu Fei-Hu Bai 《World Journal of Gastroenterology》 SCIE CAS 2023年第1期144-156,共13页
Minimal hepatic encephalopathy(MHE) is a frequent neurological and psychiatric complication of liver cirrhosis. The precise pathogenesis of MHE is complicated and has yet to be fully elucidated. Studies in cirrhotic p... Minimal hepatic encephalopathy(MHE) is a frequent neurological and psychiatric complication of liver cirrhosis. The precise pathogenesis of MHE is complicated and has yet to be fully elucidated. Studies in cirrhotic patients and experimental animals with MHE have indicated that gut microbiota dysbiosis induces systemic inflammation, hyperammonemia, and endotoxemia, subsequently leading to neuroinflammation in the brain via the gut-liver-brain axis. Related mechanisms initiated by gut microbiota dysbiosis have significant roles in MHE pathogenesis. The currently available therapeutic strategies for MHE in clinical practice, including lactulose, rifaximin, probiotics, synbiotics, and fecal microbiota transplantation, exert their effects mainly by modulating gut microbiota dysbiosis. Microbiome therapies for MHE have shown promised efficacy and safety;however, several controversies and challenges regarding their clinical use deserve to be intensively discussed. We have summarized the latest research findings concerning the roles of gut microbiota dysbiosis in the pathogenesis of MHE via the gut-liver-brain axis as well as the potential mechanisms by which microbiome therapies regulate gut microbiota dysbiosis in MHE patients. 展开更多
关键词 gut microbiota Minimal hepatic encephalopathy gut-liver-brain axis Pathogenesis THERAPEUTICS
下载PDF
Gut microbiota axis:potential target of phytochemicals from plant-based foods 被引量:1
7
作者 Ruyu Shi Congying Huang +3 位作者 Yuan Gao Xing Li Chunhong Zhang Minhui Li 《Food Science and Human Wellness》 SCIE CSCD 2023年第5期1409-1426,共18页
Food-microbiota-host interactions provide an overarching framework for understanding the function of the gut microbiota axis.Diet is a major modulator of gut microbiota.Plant-based foods are rich in phytochemicals;the... Food-microbiota-host interactions provide an overarching framework for understanding the function of the gut microbiota axis.Diet is a major modulator of gut microbiota.Plant-based foods are rich in phytochemicals;therefore,it is essential to assess such foods and elucidate the mechanisms underlying their action.In this review,we summarize the role of gut microbiota in the communication between the gut and the brain,liver,lung,kidney,and joints,as well as the role of the gut microbiota axis in diseases involving these organs.In addition,we assess the effects of phytochemicals from plant-based foods on the gut microbiota axis via different pathways. 展开更多
关键词 gut microbiota axis Disease mechanisms Plant-based foods PHYTOCHEMICALS
下载PDF
Molecular signalling during cross talk between gut brain axis regulation and progression of irritable bowel syndrome:A comprehensive review
8
作者 Shiv Vardan Singh Risha Ganguly +3 位作者 Kritika Jaiswal Aditya Kumar Yadav Ramesh Kumar Abhay K Pandey 《World Journal of Clinical Cases》 SCIE 2023年第19期4458-4476,共19页
Irritable bowel syndrome(IBS)is a chronic functional disorder which alters gastrointestinal(GI)functions,thus leading to compromised health status.Pathophysiology of IBS is not fully understood,whereas abnormal gut br... Irritable bowel syndrome(IBS)is a chronic functional disorder which alters gastrointestinal(GI)functions,thus leading to compromised health status.Pathophysiology of IBS is not fully understood,whereas abnormal gut brain axis(GBA)has been identified as a major etiological factor.Recent studies are suggestive for visceral hyper-sensitivity,altered gut motility and dysfunctional autonomous nervous system as the main clinical abnormalities in IBS patients.Bidirectional signalling interactions among these abnormalities are derived through various exogenous and endogenous factors,such as microbiota population and diversity,microbial metabolites,dietary uptake,and psychological abnormalities.Strategic efforts focused to study these interactions including probiotics,antibiotics and fecal transplantations in normal and germfree animals are clearly suggestive for the pivotal role of gut microbiota in IBS etiology.Additionally,neurotransmitters act as communication tools between enteric microbiota and brain functions,where serotonin(5-hydroxytryptamine)plays a key role in pathophysiology of IBS.It regulates GI motility,pain sense and inflammatory responses particular to mucosal and brain activity.In the absence of a better understanding of various interconnected crosstalks in GBA,more scientific efforts are required in the search of novel and targeted therapies for the management of IBS.In this review,we have summarized the gut microbial composition,interconnected signalling pathways and their regulators,available therapeutics,and the gaps needed to fill for a better management of IBS. 展开更多
关键词 Irritable bowel syndrome MICROBIOTA gut brain axis Stress SEROTONIN
下载PDF
Gut microbial dysbiosis associates hepatocellular carcinoma via the gut-liver axis 被引量:21
9
作者 Jian-Wen Jiang Xin-Hua Chen +1 位作者 Zhigang Ren Shu-Sen Zheng 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2019年第1期19-27,共9页
Background: Hepatocellular carcinoma(HCC) is one of the most common malignancies in the world. Gut microbiota has been demonstrated to play a critical role in liver inflammation, chronic fibrosis, liver cirrhosis, and... Background: Hepatocellular carcinoma(HCC) is one of the most common malignancies in the world. Gut microbiota has been demonstrated to play a critical role in liver inflammation, chronic fibrosis, liver cirrhosis, and HCC development through the gut-liver axis. Data sources: Recently there have been several innovative studies investigating gut microbial dysbiosismediated enhancement of HCC through the gut-liver axis. Literatures from January 1998 to January 2018 were searched in the Pub Med database using the keywords "gut microbiota" and "hepatocellular carcinoma" or "liver cancer", and the results of experimental and clinical studies were analyzed. Results: Gut microbial dysbiosis accompanies the progression of alcoholic liver disease, non-alcoholic fatty liver disease and liver cirrhosis, and promotes HCC progression in an experimental mouse model. The immune system and key factors such as Toll-like receptor 4 are involved in the process. There is evidence for gut microbial dysbiosis in hepatitis virus-related HCC patients. Conclusions: Gut microbial dysbiosis is closely associated with hepatic inflammation disease and HCC through the gut-liver axis. With the enhanced understanding of the interactions between gut microbiota and liver through the gut-liver axis, new treatment strategies for HCC are being developed. 展开更多
关键词 gut-liver axis gut microbiota Hepatocellular carcinoma Lipopolysaccharide TOLL-LIKE receptor 4
下载PDF
Gut-liver axis in liver cirrhosis: How to manage leaky gut and endotoxemia 被引量:35
10
作者 Hiroshi Fukui 《World Journal of Hepatology》 CAS 2015年第3期425-442,共18页
A "leaky gut" may be the cutting edge for the passage of toxins, antigens or bacteria into the body, and may play a pathogenic role in advanced liver cirrhosis and its complications. Plasma endotoxin levels ... A "leaky gut" may be the cutting edge for the passage of toxins, antigens or bacteria into the body, and may play a pathogenic role in advanced liver cirrhosis and its complications. Plasma endotoxin levels have been admitted as a surrogate marker of bacterial translocation and close relations of endotoxemia to hyperdynamic circulation, portal hypertension, renal, cardiac, pulmonary and coagulation disturbances have been reported. Bacterial overgrowth, increased intestinal permeability, failure to inactivate endotoxin,activated innate immunity are all likely to play a role in the pathological states of bacterial translocation. Therapeutic approach by management of the gut-liver axis by antibiotics, probiotics, synbiotics, prebiotics and their combinations may improve the clinical course of cirrhotic patients. Special concern should be paid on anti-endotoxin treatment. Adequate management of the gut-liver axis may be effective for prevention of liver cirrhosis itself by inhibiting the progression of fibrosis. 展开更多
关键词 gut-liver axis LIVER cirrhosis Pathogenesis Complications ENDOTOXEMIA Bacterial translocation Leaky gut TOLL-LIKE receptors Selective intestinal decontamination PROBIOTICS
下载PDF
Role of gut microbiota via the gut-liver-brain axis in digestive diseases 被引量:18
11
作者 Jian-Hong Ding Zhe Jin +7 位作者 Xiao-Xu Yang Jun Lou Wei-Xi Shan Yan-Xia Hu Qian Du Qiu-Shi Liao Rui Xie Jing-Yu Xu 《World Journal of Gastroenterology》 SCIE CAS 2020年第40期6141-6162,共22页
The gut-brain axis is a bidirectional information interaction system between the central nervous system(CNS) and the gastrointestinal tract, in which gut microbiota plays a key role. The gut microbiota forms a complex... The gut-brain axis is a bidirectional information interaction system between the central nervous system(CNS) and the gastrointestinal tract, in which gut microbiota plays a key role. The gut microbiota forms a complex network with the enteric nervous system, the autonomic nervous system, and the neuroendocrine and neuroimmunity of the CNS, which is called the microbiota-gut-brain axis. Due to the close anatomical and functional interaction of the gut-liver axis, the microbiota-gut-liver-brain axis has attracted increased attention in recent years. The microbiota-gut-liver-brain axis mediates the occurrence and development of many diseases, and it offers a direction for the research of disease treatment. In this review, we mainly discuss the role of the gut microbiota in the irritable bowel syndrome, inflammatory bowel disease, functional dyspepsia, non-alcoholic fatty liver disease, alcoholic liver disease, cirrhosis and hepatic encephalopathy via the gut-liver-brain axis, and the focus is to clarify the potential mechanisms and treatment of digestive diseases based on the further understanding of the microbiota-gut-liver-brain axis. 展开更多
关键词 Microbiota-gut-brain axis gut-liver axis gut microbiota Digestive diseases Herbaceous medications
下载PDF
Correlation between the gut microbiome and neurodegenerative diseases:a review of metagenomics evidence 被引量:2
12
作者 Xiaoyan Liu Yi Liu +7 位作者 Junlin Liu Hantao Zhang Chaofan Shan Yinglu Guo Xun Gong Mengmeng Cui Xiubin Li Min Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期833-845,共13页
A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis.As a contributing factor,microbiota dysbiosis always occurs in... A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis.As a contributing factor,microbiota dysbiosis always occurs in pathological changes of neurodegenerative diseases,such as Alzheimer’s disease,Parkinson’s disease,and amyotrophic lateral sclerosis.High-throughput sequencing technology has helped to reveal that the bidirectional communication between the central nervous system and the enteric nervous system is facilitated by the microbiota’s diverse microorganisms,and for both neuroimmune and neuroendocrine systems.Here,we summarize the bioinformatics analysis and wet-biology validation for the gut metagenomics in neurodegenerative diseases,with an emphasis on multi-omics studies and the gut virome.The pathogen-associated signaling biomarkers for identifying brain disorders and potential therapeutic targets are also elucidated.Finally,we discuss the role of diet,prebiotics,probiotics,postbiotics and exercise interventions in remodeling the microbiome and reducing the symptoms of neurodegenerative diseases. 展开更多
关键词 biomarker diet pattern gut microbiota gut-brain axis METAGENOMICS mitochondrial dysfunction multi-omics neurodegenerative disease NEUROINFLAMMATION probiotic
下载PDF
Gut flora in multiple sclerosis:implications for pathogenesis and treatment 被引量:1
13
作者 Weiwei Zhang Ying Wang +2 位作者 Mingqin Zhu Kangding Liu Hong-Liang Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1480-1488,共9页
Multiple sclerosis is an inflammatory disorder chara cterized by inflammation,demyelination,and neurodegeneration in the central nervous system.Although current first-line therapies can help manage symptoms and slow d... Multiple sclerosis is an inflammatory disorder chara cterized by inflammation,demyelination,and neurodegeneration in the central nervous system.Although current first-line therapies can help manage symptoms and slow down disease progression,there is no cure for multiple sclerosis.The gut-brain axis refers to complex communications between the gut flo ra and the immune,nervous,and endocrine systems,which bridges the functions of the gut and the brain.Disruptions in the gut flora,termed dys biosis,can lead to systemic inflammation,leaky gut syndrome,and increased susceptibility to infections.The pathogenesis of multiple sclerosis involves a combination of genetic and environmental factors,and gut flora may play a pivotal role in regulating immune responses related to multiple scle rosis.To develop more effective therapies for multiple scle rosis,we should further uncover the disease processes involved in multiple sclerosis and gain a better understanding of the gut-brain axis.This review provides an overview of the role of the gut flora in multiple scle rosis. 展开更多
关键词 gut flora gut-brain axis multiple sclerosis PATHOGENESIS treatment
下载PDF
Brain-gut-microbiota axis in Parkinson's disease 被引量:65
14
作者 Agata Mulak Bruno Bonaz 《World Journal of Gastroenterology》 SCIE CAS 2015年第37期10609-10620,共12页
Parkinson's disease(PD) is characterized by alphasynucleinopathy that affects all levels of the braingut axis including the central, autonomic, and enteric nervous systems. Recently, it has been recognized that th... Parkinson's disease(PD) is characterized by alphasynucleinopathy that affects all levels of the braingut axis including the central, autonomic, and enteric nervous systems. Recently, it has been recognized that the brain-gut axis interactions are significantly modulated by the gut microbiota via immunological,neuroendocrine, and direct neural mechanisms. Dysregulation of the brain-gut-microbiota axis in PD may be associated with gastrointestinal manifestations frequently preceding motor symptoms, as well as with the pathogenesis of PD itself, supporting the hypothesis that the pathological process is spread from the gut to the brain. Excessive stimulation of the innate immune system resulting from gut dysbiosis and/or small intestinal bacterial overgrowth and increased intestinal permeability may induce systemic inflammation, while activation of enteric neurons and enteric glial cells may contribute to the initiation of alpha-synuclein misfolding.Additionally, the adaptive immune system may be disturbed by bacterial proteins cross-reacting with human antigens. A better understanding of the brain-gutmicrobiota axis interactions should bring a new insight in the pathophysiology of PD and permit an earlier diagnosis with a focus on peripheral biomarkers within the enteric nervous system. Novel therapeutic options aimed at modifying the gut microbiota composition and enhancing the intestinal epithelial barrier integrity in PD patients could influence the initial step of the following cascade of neurodegeneration in PD. 展开更多
关键词 Brain-gut-microbiota axis ENTERIC nervous SYSTEM G
下载PDF
Functional gastrointestinal disorders and gut-brain axis: What does the future hold? 被引量:20
15
作者 Kashif Mukhtar Hasham Nawaz Shahab Abid 《World Journal of Gastroenterology》 SCIE CAS 2019年第5期552-566,共15页
Despite their high prevalence, lack of understanding of the exact pathophysiology of the functional gastrointestinal disorders has restricted us to symptomatic diagnostic tools and therapies. Complex mechanisms underl... Despite their high prevalence, lack of understanding of the exact pathophysiology of the functional gastrointestinal disorders has restricted us to symptomatic diagnostic tools and therapies. Complex mechanisms underlying the disturbances in the bidirectional communication between the gastrointestinal tract and the brain have a vital role in the pathogenesis and are key to our understanding of the disease phenomenon. Although we have come a long way in our understanding of these complex disorders with the help of studies on animals especially rodents, there need to be more studies in humans, especially to identify the therapeutic targets. This review study looks at the anatomical features of the gut-brain axis in order to discuss the different factors and underlying molecular mechanisms that may have a role in the pathogenesis of functional gastrointestinal disorders. These molecules and their receptors can be targeted in future for further studies and possible therapeutic interventions. The article also discusses the potential role of artificial intelligence and machine learning and its possible role in our understanding of these scientifically challenging disorders. 展开更多
关键词 Functional gastrointestinal disorders IDIOPATHIC bowel syndrome gut-brain axis Microbiome-gut-brain axis Machine learning Artificial intelligence
下载PDF
New technologies to investigate the brain-gut axis 被引量:15
16
作者 Abhishek Sharma Dina Lelic +2 位作者 Christina Brock Peter Paine Qasim Aziz 《World Journal of Gastroenterology》 SCIE CAS CSCD 2009年第2期182-191,共10页
Functional gastrointestinal disorders are commonly encountered in clinical practice, and pain is their commonest presenting symptom. In addition, patients with these disorders often demonstrate a heightened sensitivit... Functional gastrointestinal disorders are commonly encountered in clinical practice, and pain is their commonest presenting symptom. In addition, patients with these disorders often demonstrate a heightened sensitivity to experimental visceral stimulation, termed visceral pain hypersensitivity that is likely to be important in their pathophysiology. Knowledge of how the brain processes sensory information from visceral structures is still in its infancy. However, our understanding has been propelled by technological imaging advances such as functional Magnetic Resonance Imaging, Positron Emission To-mography, Magnetoencephalography, and Electroen-cephalography (EEG). Numerous human studies have non-invasively demonstrated the complexity involved in functional pain processing, and highlighted a number of subcortical and cortical regions involved. This review will focus on the neurophysiological pathways (primary afferents, spinal and supraspinal transmission), brain- imaging techniques and the influence of endogenous and psychological processes in healthy controls and patients suffering from functional gastrointestinal dis- orders. Special attention will be paid to the newer EEG source analysis techniques. Understanding the pheno- typic differences that determine an individual's response to injurious stimuli could be the key to understanding why some patients develop pain and hyperalgesia in response to inflammation/injury while others do not. For future studies, an integrated approach is required incorporating an individual's psychological, autonomic, neuroendocrine, neurophysiological, and genetic prof ile to def ine phenotypic traits that may be at greater risk of developing sensitised states in response to gut in? am- mation or injury. 展开更多
关键词 胃肠无序 脑中枢 神经系统 神经生理学
下载PDF
Brain-gut axis in the pathogenesis of Helicobacter pylori infection 被引量:31
17
作者 Jacek Budzyński Maria Kopocka 《World Journal of Gastroenterology》 SCIE CAS 2014年第18期5212-5225,共14页
Helicobacter pylori(H.pylori)infection is the main pathogenic factor for upper digestive tract organic diseases.In addition to direct cytotoxic and proinflammatory effects,H.pylori infection may also induce abnormalit... Helicobacter pylori(H.pylori)infection is the main pathogenic factor for upper digestive tract organic diseases.In addition to direct cytotoxic and proinflammatory effects,H.pylori infection may also induce abnormalities indirectly by affecting the brain-gut axis,similar to other microorganisms present in the alimentary tract.The brain-gut axis integrates the central,peripheral,enteric and autonomic nervous systems,as well as the endocrine and immunological systems,with gastrointestinal functions and environmental stimuli,including gastric and intestinal microbiota.The bidirectional relationship between H.pylori infection and the brain-gut axis influences both the contagion process and the host’s neuroendocrine-immunological reaction to it,resulting in alterations in cognitive functions,food intake and appetite,immunological response,and modification of symptom sensitivity thresholds.Furthermore,disturbances in the upper and lower digestive tract permeability,motility and secretion can occur,mainly as a form of irritable bowel syndrome.Many of these abnormalities disappear following H.pylori eradication.H.pylori may have direct neurotoxic effects that lead to alteration of the brain-gut axis through the activation of neurogenic inflammatory processes,or by microelement deficiency secondary to functional and morphological changes in the digestive tract.In digestive tissue,H.pylori can alter signaling in the brain-gut axis by mast cells,the main brain-gut axis effector,as H.pylori infection is associated with decreased mast cell infiltration in the digestive tract.Nevertheless,unequivocal data concerning the direct and immediate effect of H.pylori infection on the brain-gut axis are still lacking.Therefore,further studies evaluating the clinical importance of these host-bacteria interactions will improve our understanding of H.pylori infection pathophysiology and suggest new therapeutic approaches. 展开更多
关键词 HELICOBACTER PYLORI Brain-gut axis Behavior Motili
下载PDF
Gut-liver axis signaling in portal hypertension 被引量:14
18
作者 Benedikt Simbrunner Mattias Mandorfer +1 位作者 Michael Trauner Thomas Reiberger 《World Journal of Gastroenterology》 SCIE CAS 2019年第39期5897-5917,共21页
Portal hypertension(PHT)in advanced chronic liver disease(ACLD)results from increased intrahepatic resistance caused by pathologic changes of liver tissue composition(structural component)and intrahepatic vasoconstric... Portal hypertension(PHT)in advanced chronic liver disease(ACLD)results from increased intrahepatic resistance caused by pathologic changes of liver tissue composition(structural component)and intrahepatic vasoconstriction(functional component).PHT is an important driver of hepatic decompensation such as development of ascites or variceal bleeding.Dysbiosis and an impaired intestinal barrier in ACLD facilitate translocation of bacteria and pathogen-associated molecular patterns(PAMPs)that promote disease progression via immune system activation with subsequent induction of proinflammatory and profibrogenic pathways.Congestive portal venous blood flow represents a critical pathophysiological mechanism linking PHT to increased intestinal permeability:The intestinal barrier function is affected by impaired microcirculation,neoangiogenesis,and abnormal vascular and mucosal permeability.The close bidirectional relationship between the gut and the liver has been termed“gut-liver axis”.Treatment strategies targeting the gut-liver axis by modulation of microbiota composition and function,intestinal barrier integrity,as well as amelioration of liver fibrosis and PHT are supposed to exert beneficial effects.The activation of the farnesoid X receptor in the liver and the gut was associated with beneficial effects in animal experiments,however,further studies regarding efficacy and safety of pharmacological FXR modulation in patients with ACLD are needed.In this review,we summarize the clinical impact of PHT on the course of liver disease,discuss the underlying pathophysiological link of PHT to gut-liver axis signaling,and provide insight into molecular mechanisms that may represent novel therapeutic targets. 展开更多
关键词 CIRRHOSIS Portal hypertension gut-liver axis Bacterial TRANSLOCATION INTESTINAL barrier Farnesoid X receptor
下载PDF
Focus on the gut-brain axis: multiple sclerosis, the intestinal barrier and the microbiome 被引量:7
19
作者 Carlos R Camara-Lemarroy Luanne M Metz V Wee Yong 《World Journal of Gastroenterology》 SCIE CAS 2018年第37期4217-4223,共7页
The brain-gut axis serves as the bidirectional connection between the gut microbiome, the intestinal barrier and the immune system that might be relevant for the pathophysiology of inflammatory demyelinating diseases.... The brain-gut axis serves as the bidirectional connection between the gut microbiome, the intestinal barrier and the immune system that might be relevant for the pathophysiology of inflammatory demyelinating diseases. People with multiple sclerosis have been shown to have an altered microbiome, increased intestinal permeability and changes in bile acid metabolism. Experimental evidence suggests that these changes can lead to profound alterations of peripheral and central nervous system immune regulation. Besides being of pathophysiological interest, the brain-gut axis could also open new avenues of therapeutic targets. Modification of the microbiome, the use of probiotics, fecal microbiota transplantation, supplementation with bile acids and intestinal barrier enhancers are all promising candidates. Hopefully, pre-clinical studies and clinical trials will soon yield significant results. 展开更多
关键词 Multiple SCLEROSIS MICROBIOME Intestinal barrier Bile acids gut-brain axis
下载PDF
Gut-liver axis and probiotics: Their role in non-alcoholic fatty liver disease 被引量:57
20
作者 Giulia Paolella Claudia Mandato +3 位作者 Luca Pierri Marco Poeta Martina Di Stasi Pietro Vajro 《World Journal of Gastroenterology》 SCIE CAS 2014年第42期15518-15531,共14页
The incidence of obesity and its related conditions, including non-alcoholic fatty liver disease(NAFLD), has dramatically increased in all age groups worldwide. Given the health consequences of these conditions, and t... The incidence of obesity and its related conditions, including non-alcoholic fatty liver disease(NAFLD), has dramatically increased in all age groups worldwide. Given the health consequences of these conditions, and the subsequent economic burden on healthcare systems, their prevention and treatment have become major priorities. Because standard dietary and lifestyle changes and pathogenically-oriented therapies(e.g., antioxidants, oral hypoglycemic agents, and lipid-lowering agents) often fail due to poor compliance and/or lack of efficacy, novel approaches directed toward other pathomechanisms are needed. Here we present several lines of evidence indicating that, by increasing energy extraction in some dysbiosis conditions or small intestinal bacterial overgrowth,specific gut microbiota and/or a"low bacterial richness"may play a role in obesity,metabolic syndrome,and fatty liver.Under conditions involving a damaged intestinal barrier("leaky gut"),the gut-liver axis may enhance the natural interactions between intestinal bacteria/bacterial products and hepatic receptors(e.g.,toll-like receptors),thus promoting the following cascade of events:oxidative stress,insulinresistance,hepatic inflammation,and fibrosis.We also discuss the possible modulation of gut microbiota by probiotics,as attempted in NAFLD animal model studies and in several pilot pediatric and adult human studies.Globally,this approach appears to be a promising and innovative add-on therapeutic tool for NAFLD in the context of multi-target therapy. 展开更多
关键词 PROBIOTICS gut-liver axis INTESTINAL micro-biota B
下载PDF
上一页 1 2 69 下一页 到第
使用帮助 返回顶部