Gut microbiota play important roles in the immunity,digestion,and energy meta bolism of their reptile hosts.Mangshan pit viper(Protobothrops mangshanensis)is a critically endangered snake species that is a Class I nat...Gut microbiota play important roles in the immunity,digestion,and energy meta bolism of their reptile hosts.Mangshan pit viper(Protobothrops mangshanensis)is a critically endangered snake species that is a Class I national protected species in China.Little is known regarding the relationship between P.mangshanensis and their gut microbial communities.In this study,the gut microbiota of wild P.mangshanensis individuals,artificially hiberna ting captive individuals,and non-hibernating captive individuals were compared across nine samples.Comparative shotgun metagenomic analysis was used to investigate the taxonomic composition,diversity,and function of P.mangshanensis gut microbial communities and assess whether their gut microbiomes were affected by their living environments and captivity conditions.The dominant phyla within P.mangshanensis gut microbial communities were Proteobacteria(65.55%),Bacteroidetes(15.97%),and Firmicutes(8.11%).Enriched functional pathways within the gut microbiota included meta bolism(54.9%),environmental information processing(9.67%),and genetic information processing(9.37%).Wild snake gut communities exhibited higher microbial diversity than the other two groups.The gut microbiomes of wild and hibernating captive snakes may be more reflective of healthy intestinal homeostasis than that in nonhibernating snakes.Specifically,non-hibernating snakes exhibited increased levelsof potentially pathogenic populations and functional specialization within gut microbial communities.Thus,different livingenvironments and captivitymethodsmay correspond to major shifts in microbiota composition,diversity,and function within P.mangshanensis.This study provides important insights to help guide the conservation of P.mangshanensis,while also carrying broad implications for our understanding of the effects of living environments and non-hibernating captivity conditions on the gut microbiota of snakes.展开更多
In this study, the influences of immersion bathing in different concentrations of Bacillus velezensis DY-6 on the body weight gain rate and non-specific immune enzyme activities of the coelom fluid of sea cucumber (Ap...In this study, the influences of immersion bathing in different concentrations of Bacillus velezensis DY-6 on the body weight gain rate and non-specific immune enzyme activities of the coelom fluid of sea cucumber (Apostichopus japonicus) were determined in order to obtain the optimum bacterial concentration. The gut microbiota change in A. japonicus was then analyzed through high-throughput sequencing during the immersion bathing in B. velezensis DY-6 at the optimum concentration for 49 d. The results illustrate that the body weight growth rate of all bathing groups was higher than that of the control. The highest growth rate (25.3%) was achieved when the bacterial concentration was 1×10^3 CFU/mL. The activities of non-specific immune enzymes (ACP, AKP, SOD and LZM) of all bathing groups increased, and the activities of the enzymes of groups bathed with the bacterium at 1×10^3 and 1×10^4 CFU/mL reached the highest on day 21 and day 28. Taking the growth rate and economic cost into consideration, the optimum concentration of B. velezensis DY-6 was 1×10^3 CFU/mL. The influences of immersion bathing in B. velezensis DY-6 at 1×10^3 CFU/mL on the gut microbiota of A. japonicus were then evaluated through 16S rDNA sequencing analysis. Results showed that the gut microbiota changed with the addition of B. velezensis DY-6, and the richness and diversity of the gut microbiota peaked twice on day 14 and day 21, respectively. In association with the non-specific immune enzyme activities and if day 28 was selected as the dividing point, the community structure of the gut microbiota could be obviously divided into two types. The correlation analysis revealed that the non-specific immune enzyme activities were correlated significantly to some gut bacteria (in the phyla Firmicutes, Proteobacteria, and Bacteroidetes) after immersion bathing in B. velezensis DY-6. Our findings will provide the theoretical foundation for probiotic application in sea cucumber farming.展开更多
Endotherms recently expanding to cold environments generally exhibit strong physiological acclimation to sustain high body temperature.During this process,gut microbes likely play a considerable role in host physiolog...Endotherms recently expanding to cold environments generally exhibit strong physiological acclimation to sustain high body temperature.During this process,gut microbes likely play a considerable role in host physiological functions,including digestion and thermogenesis.The light-vented bulbul Pycnonotus sinensis represents one such species.It used to be restricted to the Oriental realm but expanded its distribution range north to the Palearctic areas during the past few decades.Here,we explored the seasonal dynamics of the resting metabolic rate(RMR)and microbiota for local and newly colonized populations of the species.Our results showed that the mass-adjusted RMR and body mass were pos-itively correlated with latitude variations in both seasons.Consistently,the gut microbiota showed a corresponding variation to the northern cold environments.In the two northern populations,the alpha diversity decreased compared with those of the two southern populations.Significant differences were detected in dominant phyla,such as Firmicutes,Bacteroidetes,Proteobacteria,and Desulfobacterota in both seasons.The core microbiota showed geographic differences in the winter,including the elevated relative abundance of 5 species in northern populations.Finally,to explore the link between microbial communities and host metabolic thermogenesis,we conducted a correlation analysis between microbiota and mass-adjusted RMR.We found that more genera were significantly correlated with mass-adjusted RMR in the wintering season compared to the breeding season(71 vs.23).These results suggest that microbiota of the lighted-vented bulbul linked with thermogenesis in diversity and abundance under northward expansion.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 31472021)the Project for Wildlife Conservation and Management of the National Forestry and Grassland Administration of China (Grant No. 2021-HN-001)the Wildlife Conservation Project of Hunan Province (Grant No. HNYB2019-001)
文摘Gut microbiota play important roles in the immunity,digestion,and energy meta bolism of their reptile hosts.Mangshan pit viper(Protobothrops mangshanensis)is a critically endangered snake species that is a Class I national protected species in China.Little is known regarding the relationship between P.mangshanensis and their gut microbial communities.In this study,the gut microbiota of wild P.mangshanensis individuals,artificially hiberna ting captive individuals,and non-hibernating captive individuals were compared across nine samples.Comparative shotgun metagenomic analysis was used to investigate the taxonomic composition,diversity,and function of P.mangshanensis gut microbial communities and assess whether their gut microbiomes were affected by their living environments and captivity conditions.The dominant phyla within P.mangshanensis gut microbial communities were Proteobacteria(65.55%),Bacteroidetes(15.97%),and Firmicutes(8.11%).Enriched functional pathways within the gut microbiota included meta bolism(54.9%),environmental information processing(9.67%),and genetic information processing(9.37%).Wild snake gut communities exhibited higher microbial diversity than the other two groups.The gut microbiomes of wild and hibernating captive snakes may be more reflective of healthy intestinal homeostasis than that in nonhibernating snakes.Specifically,non-hibernating snakes exhibited increased levelsof potentially pathogenic populations and functional specialization within gut microbial communities.Thus,different livingenvironments and captivitymethodsmay correspond to major shifts in microbiota composition,diversity,and function within P.mangshanensis.This study provides important insights to help guide the conservation of P.mangshanensis,while also carrying broad implications for our understanding of the effects of living environments and non-hibernating captivity conditions on the gut microbiota of snakes.
基金Supported by the Special Scientific Research Funds for Central Non-profit Institutes,Yellow Sea Fisheries Research Institute,Chinese Academy of Fishery Sciences(No.20603022016008)the National Key R&D Program of China(No.2018YFD0901603)the Agriculture Seed Improvement Project of Shandong Province(No.2017LZGC010)
文摘In this study, the influences of immersion bathing in different concentrations of Bacillus velezensis DY-6 on the body weight gain rate and non-specific immune enzyme activities of the coelom fluid of sea cucumber (Apostichopus japonicus) were determined in order to obtain the optimum bacterial concentration. The gut microbiota change in A. japonicus was then analyzed through high-throughput sequencing during the immersion bathing in B. velezensis DY-6 at the optimum concentration for 49 d. The results illustrate that the body weight growth rate of all bathing groups was higher than that of the control. The highest growth rate (25.3%) was achieved when the bacterial concentration was 1×10^3 CFU/mL. The activities of non-specific immune enzymes (ACP, AKP, SOD and LZM) of all bathing groups increased, and the activities of the enzymes of groups bathed with the bacterium at 1×10^3 and 1×10^4 CFU/mL reached the highest on day 21 and day 28. Taking the growth rate and economic cost into consideration, the optimum concentration of B. velezensis DY-6 was 1×10^3 CFU/mL. The influences of immersion bathing in B. velezensis DY-6 at 1×10^3 CFU/mL on the gut microbiota of A. japonicus were then evaluated through 16S rDNA sequencing analysis. Results showed that the gut microbiota changed with the addition of B. velezensis DY-6, and the richness and diversity of the gut microbiota peaked twice on day 14 and day 21, respectively. In association with the non-specific immune enzyme activities and if day 28 was selected as the dividing point, the community structure of the gut microbiota could be obviously divided into two types. The correlation analysis revealed that the non-specific immune enzyme activities were correlated significantly to some gut bacteria (in the phyla Firmicutes, Proteobacteria, and Bacteroidetes) after immersion bathing in B. velezensis DY-6. Our findings will provide the theoretical foundation for probiotic application in sea cucumber farming.
基金funded by National Natural Science Foundation of China(31471991)to G.S.the National Key Research and Development Program of China(2022YFC2601601)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA19050202)to F.L.,and the National Natural Science Foundation of China(32000295)to J.Y..
文摘Endotherms recently expanding to cold environments generally exhibit strong physiological acclimation to sustain high body temperature.During this process,gut microbes likely play a considerable role in host physiological functions,including digestion and thermogenesis.The light-vented bulbul Pycnonotus sinensis represents one such species.It used to be restricted to the Oriental realm but expanded its distribution range north to the Palearctic areas during the past few decades.Here,we explored the seasonal dynamics of the resting metabolic rate(RMR)and microbiota for local and newly colonized populations of the species.Our results showed that the mass-adjusted RMR and body mass were pos-itively correlated with latitude variations in both seasons.Consistently,the gut microbiota showed a corresponding variation to the northern cold environments.In the two northern populations,the alpha diversity decreased compared with those of the two southern populations.Significant differences were detected in dominant phyla,such as Firmicutes,Bacteroidetes,Proteobacteria,and Desulfobacterota in both seasons.The core microbiota showed geographic differences in the winter,including the elevated relative abundance of 5 species in northern populations.Finally,to explore the link between microbial communities and host metabolic thermogenesis,we conducted a correlation analysis between microbiota and mass-adjusted RMR.We found that more genera were significantly correlated with mass-adjusted RMR in the wintering season compared to the breeding season(71 vs.23).These results suggest that microbiota of the lighted-vented bulbul linked with thermogenesis in diversity and abundance under northward expansion.