Based on the data of measured formation pressure, drilling fluid density of key exploration wells and calculated pressure by well logging, combined with the analysis of natural gas geological conditions, the character...Based on the data of measured formation pressure, drilling fluid density of key exploration wells and calculated pressure by well logging, combined with the analysis of natural gas geological conditions, the characteristics and formation mechanisms of formation fluid overpressure systems in different foreland basins and the relationship between overpressure systems and large-scale gas accumulation are discussed.(1) The formation mechanisms of formation overpressure in different foreland basins are different. The formation mechanism of overpressure in the Kuqa foreland basin is mainly the overpressure sealing of plastic salt gypsum layer and hydrocarbon generation pressurization in deep–ultra-deep layers, that in the southern Junggar foreland basin is mainly hydrocarbon generation pressurization and under-compaction sealing, and that in the western Sichuan foreland basin is mainly hydrocarbon generation pressurization and paleo-fluid overpressure residual.(2) There are three common characteristics in foreland basins, i.e. superimposed development of multi-type overpressure and multi-layer overpressure, strong–extremely strong overpressure developed in a closed foreland thrust belt, and strong–extremely strong overpressure developed in a deep foreland uplift area.(3) There are four regional overpressure sealing and storage mechanisms, which play an important role in controlling large gas fields, such as the overpressure of plastic salt gypsum layer, the overpressure formed by hydrocarbon generation pressurization, the residual overpressure after Himalayan uplift and denudation, and the under-compaction overpressure.(4) Regional overpressure is an important guarantee for forming large gas fields, the sufficient gas source, large-scale reservoir and trap development in overpressure system are the basic conditions for forming large gas fields, and the overpressure system is conducive to forming deep to ultra-deep large gas fields.展开更多
基金Supported by the Petrochina Science and Technology Major Project(2016B-05)。
文摘Based on the data of measured formation pressure, drilling fluid density of key exploration wells and calculated pressure by well logging, combined with the analysis of natural gas geological conditions, the characteristics and formation mechanisms of formation fluid overpressure systems in different foreland basins and the relationship between overpressure systems and large-scale gas accumulation are discussed.(1) The formation mechanisms of formation overpressure in different foreland basins are different. The formation mechanism of overpressure in the Kuqa foreland basin is mainly the overpressure sealing of plastic salt gypsum layer and hydrocarbon generation pressurization in deep–ultra-deep layers, that in the southern Junggar foreland basin is mainly hydrocarbon generation pressurization and under-compaction sealing, and that in the western Sichuan foreland basin is mainly hydrocarbon generation pressurization and paleo-fluid overpressure residual.(2) There are three common characteristics in foreland basins, i.e. superimposed development of multi-type overpressure and multi-layer overpressure, strong–extremely strong overpressure developed in a closed foreland thrust belt, and strong–extremely strong overpressure developed in a deep foreland uplift area.(3) There are four regional overpressure sealing and storage mechanisms, which play an important role in controlling large gas fields, such as the overpressure of plastic salt gypsum layer, the overpressure formed by hydrocarbon generation pressurization, the residual overpressure after Himalayan uplift and denudation, and the under-compaction overpressure.(4) Regional overpressure is an important guarantee for forming large gas fields, the sufficient gas source, large-scale reservoir and trap development in overpressure system are the basic conditions for forming large gas fields, and the overpressure system is conducive to forming deep to ultra-deep large gas fields.