Coronal plane alignment in total knee arthroplasty(TKA)is an important predictor of clinical outcomes including patient satisfaction and device longevity.Radiography and computer assisted navigation are the two primar...Coronal plane alignment in total knee arthroplasty(TKA)is an important predictor of clinical outcomes including patient satisfaction and device longevity.Radiography and computer assisted navigation are the two primary technologies currently available to surgeons for intraoperative assessment of alignment;however,neither is particularly well-suited for use in this increasingly high volume procedure.Herein we propose a novel gyroscopebased instrument for intraoperative validation of tibia coronal plane alignment,and provide initial analytical and experimental performance assessments.The gyroscope-based alignment estimate is derived from simplified joint geometry and verified experimentally using a custom tibial trial insert containing a consumer-grade inertial measurement unit(IMU).Average accuracy of the gyroscope-based tibia coronal angle estimate was found to be within1in mechanical leg jig and cadaver testing.These results indicate that the proposed gyroscope-based method shows promise for low cost,accurate intraoperative validation of limb alignment in TKA patients.Integrating IMU technology into the TKA surgical workflow via low-cost instrumentation will enable surgeons to easily validate implant alignment in real time,thereby reducing cost,operating room time,and future revision burden.展开更多
针对商用低精度惯性测量单元具有高成本、制造工艺复杂、废弃后污染环境、不能生物降解等缺点,提出一种低成本、可生物降解的木制惯性测量单元。该设计包含平衡振子和非平衡振子单元,分别用于测量3轴加速度和3轴角加速度。采用激光诱导...针对商用低精度惯性测量单元具有高成本、制造工艺复杂、废弃后污染环境、不能生物降解等缺点,提出一种低成本、可生物降解的木制惯性测量单元。该设计包含平衡振子和非平衡振子单元,分别用于测量3轴加速度和3轴角加速度。采用激光诱导石墨烯的工艺在木梁上制备应变传感器阵列,并形成多组惠斯顿电桥测量电路。结果表明:加速度方面,X轴灵敏度为0.006 m V/g,Y轴灵敏度为8.695×10^(-4)m V/g,Z轴灵敏度为0.200 m V/g;角加速度方面,X轴灵敏度为0.285 m V/(rad/s^(2)),绕Y轴旋转的灵敏度为0.305 m V/(rad/s^(2)),绕Z轴旋转的灵敏度为0.765 m V/(rad/s^(2))。与有限单元法仿真结果对比,实验测量误差在10%以内,且具有良好的重复测量精度。该惯性测量单元在木制船舶、木制载具、木制家具等方面具有潜在的应用前景。展开更多
基金This work was supported by OrthoSensor,Inc.,Dania Beach,FL[grant number 20151001].
文摘Coronal plane alignment in total knee arthroplasty(TKA)is an important predictor of clinical outcomes including patient satisfaction and device longevity.Radiography and computer assisted navigation are the two primary technologies currently available to surgeons for intraoperative assessment of alignment;however,neither is particularly well-suited for use in this increasingly high volume procedure.Herein we propose a novel gyroscopebased instrument for intraoperative validation of tibia coronal plane alignment,and provide initial analytical and experimental performance assessments.The gyroscope-based alignment estimate is derived from simplified joint geometry and verified experimentally using a custom tibial trial insert containing a consumer-grade inertial measurement unit(IMU).Average accuracy of the gyroscope-based tibia coronal angle estimate was found to be within1in mechanical leg jig and cadaver testing.These results indicate that the proposed gyroscope-based method shows promise for low cost,accurate intraoperative validation of limb alignment in TKA patients.Integrating IMU technology into the TKA surgical workflow via low-cost instrumentation will enable surgeons to easily validate implant alignment in real time,thereby reducing cost,operating room time,and future revision burden.
文摘针对商用低精度惯性测量单元具有高成本、制造工艺复杂、废弃后污染环境、不能生物降解等缺点,提出一种低成本、可生物降解的木制惯性测量单元。该设计包含平衡振子和非平衡振子单元,分别用于测量3轴加速度和3轴角加速度。采用激光诱导石墨烯的工艺在木梁上制备应变传感器阵列,并形成多组惠斯顿电桥测量电路。结果表明:加速度方面,X轴灵敏度为0.006 m V/g,Y轴灵敏度为8.695×10^(-4)m V/g,Z轴灵敏度为0.200 m V/g;角加速度方面,X轴灵敏度为0.285 m V/(rad/s^(2)),绕Y轴旋转的灵敏度为0.305 m V/(rad/s^(2)),绕Z轴旋转的灵敏度为0.765 m V/(rad/s^(2))。与有限单元法仿真结果对比,实验测量误差在10%以内,且具有良好的重复测量精度。该惯性测量单元在木制船舶、木制载具、木制家具等方面具有潜在的应用前景。