In this paper,we propose and analyze the interior penalty discontinuous Galerkin method for H(div)-elliptic problem.An optimal a priori error estimate in the energy norm is proved.In addition,a residual-based a poster...In this paper,we propose and analyze the interior penalty discontinuous Galerkin method for H(div)-elliptic problem.An optimal a priori error estimate in the energy norm is proved.In addition,a residual-based a posteriori error estimator is obtained.The estimator is proved to be both reliable and efficient in the energy norm.Some numerical testes are presented to demonstrate the effectiveness of our method.展开更多
We develop and analyze an adaptive hybridized Interior Penalty Discontinuous Galerkin(IPDG-H)method for H(curl)-elliptic boundary value problems in 2D or 3D arising from a semi-discretization of the eddy currents equ...We develop and analyze an adaptive hybridized Interior Penalty Discontinuous Galerkin(IPDG-H)method for H(curl)-elliptic boundary value problems in 2D or 3D arising from a semi-discretization of the eddy currents equations.The method can be derived from a mixed formulation of the given boundary value problem and involves a Lagrange multiplier that is an approximation of the tangential traces of the primal variable on the interfaces of the underlying triangulation of the computational domain.It is shown that the IPDG-H technique can be equivalently formulated and thus implemented as a mortar method.The mesh adaptation is based on a residual-type a posteriori error estimator consisting of element and face residuals.Within a unified framework for adaptive finite element methods,we prove the reliability of the estimator up to a consistency error.The performance of the adaptive symmetric IPDG-H method is documented by numerical results for representative test examples in 2D.展开更多
We consider a singular perturbation problem which describes 2D Darcy-Stokes flow. An H(div)- conforming rectangular element, DS-R14, is proposed and analyzed first. This element has 14 degrees of freedom for velocit...We consider a singular perturbation problem which describes 2D Darcy-Stokes flow. An H(div)- conforming rectangular element, DS-R14, is proposed and analyzed first. This element has 14 degrees of freedom for velocity and is proved to be uniformly convergent with respect to perturbation constant. We then simplify this element to get another H(div)-conforming rectangular element, DS-R12, which has 12 degrees of freedom for velocity. The uniform convergence is also obtained for this element. Finally, we construct a de Rham complex corresponding to DS-R12 element.展开更多
In order to solve the magnetohydrodynamics(MHD)equations with a H(div)-conforming element,a novel approach is proposed to ensure the exact divergence-free condition on the magnetic field.The idea is to add on each ele...In order to solve the magnetohydrodynamics(MHD)equations with a H(div)-conforming element,a novel approach is proposed to ensure the exact divergence-free condition on the magnetic field.The idea is to add on each element an extra interior bubble function from a higher order hierarchicalH(div)-conforming basis.Four such hierarchical bases for theH(div)-conforming quadrilateral,triangular,hexahedral,and tetrahedral elements are either proposed(in the case of tetrahedral)or reviewed.Numerical results have been presented to show the linear independence of the basis functions for the two simplicial elements.Good matrix conditioning has been confirmed numerically up to the fourth order for the triangular element and up to the third order for the tetrahedral element.展开更多
Hierarchical bases of arbitrary order for H(div)-conforming triangular and tetrahedral elements are constructedwith the goal of improving the conditioning of the mass and stiffness matrices.For the basis with the tria...Hierarchical bases of arbitrary order for H(div)-conforming triangular and tetrahedral elements are constructedwith the goal of improving the conditioning of the mass and stiffness matrices.For the basis with the triangular element,it is found numerically that the conditioning is acceptable up to the approximation of order four,and is better than a corresponding basis in the dissertation by Sabine Zaglmayr[High Order Finite Element Methods for Electromagnetic Field Computation,Johannes Kepler Universit¨at,Linz,2006].The sparsity of the mass matrices from the newly constructed basis and from the one by Zaglmayr is similar for approximations up to order four.The stiffness matrix with the new basis is much sparser than that with the basis by Zaglmayr for approximations up to order four.For the tetrahedral element,it is identified numerically that the conditioning is acceptable only up to the approximation of order three.Compared with the newly constructed basis for the triangular element,the sparsity of the massmatrices fromthe basis for the tetrahedral element is relatively sparser.展开更多
Classical facet elements do not provide an optimal rate of convergence of the numerical solution toward the solution of the exact problem in H(div)-norm for general unstructured meshes containing hexahedra and prisms....Classical facet elements do not provide an optimal rate of convergence of the numerical solution toward the solution of the exact problem in H(div)-norm for general unstructured meshes containing hexahedra and prisms.We propose two new families of high-order elements for hexahedra,triangular prisms and pyramids that recover the optimal convergence.These elements have compatible restrictions with each other,such that they can be used directly on general hybrid meshes.Moreover the H(div)proposed spaces are completing the De Rham diagram with optimal elements previously constructed for H1 and H(curl)approximation.The obtained pyramidal elements are compared theoretically and numerically with other elements of the literature.Eventually,numerical results demonstrate the efficiency of the finite elements constructed.展开更多
文摘In this paper,we propose and analyze the interior penalty discontinuous Galerkin method for H(div)-elliptic problem.An optimal a priori error estimate in the energy norm is proved.In addition,a residual-based a posteriori error estimator is obtained.The estimator is proved to be both reliable and efficient in the energy norm.Some numerical testes are presented to demonstrate the effectiveness of our method.
基金The work of the first author has been supported by the German Na-tional Science Foundation DFG within the Research Center MATHEON and by the WCU program through KOSEF(R31-2008-000-10049-0).The other authors acknowledge sup-port by the NSF grant DMS-0810176.1
文摘We develop and analyze an adaptive hybridized Interior Penalty Discontinuous Galerkin(IPDG-H)method for H(curl)-elliptic boundary value problems in 2D or 3D arising from a semi-discretization of the eddy currents equations.The method can be derived from a mixed formulation of the given boundary value problem and involves a Lagrange multiplier that is an approximation of the tangential traces of the primal variable on the interfaces of the underlying triangulation of the computational domain.It is shown that the IPDG-H technique can be equivalently formulated and thus implemented as a mortar method.The mesh adaptation is based on a residual-type a posteriori error estimator consisting of element and face residuals.Within a unified framework for adaptive finite element methods,we prove the reliability of the estimator up to a consistency error.The performance of the adaptive symmetric IPDG-H method is documented by numerical results for representative test examples in 2D.
基金supported by National Natural Science Foundation of China(Grant No.11071226)the Hong Kong Research Grants Council(Grant No.201112)
文摘We consider a singular perturbation problem which describes 2D Darcy-Stokes flow. An H(div)- conforming rectangular element, DS-R14, is proposed and analyzed first. This element has 14 degrees of freedom for velocity and is proved to be uniformly convergent with respect to perturbation constant. We then simplify this element to get another H(div)-conforming rectangular element, DS-R12, which has 12 degrees of freedom for velocity. The uniform convergence is also obtained for this element. Finally, we construct a de Rham complex corresponding to DS-R12 element.
基金This research is supported in part by a DOE grant DEFG0205ER25678 and a NSF grant DMS-1005441.
文摘In order to solve the magnetohydrodynamics(MHD)equations with a H(div)-conforming element,a novel approach is proposed to ensure the exact divergence-free condition on the magnetic field.The idea is to add on each element an extra interior bubble function from a higher order hierarchicalH(div)-conforming basis.Four such hierarchical bases for theH(div)-conforming quadrilateral,triangular,hexahedral,and tetrahedral elements are either proposed(in the case of tetrahedral)or reviewed.Numerical results have been presented to show the linear independence of the basis functions for the two simplicial elements.Good matrix conditioning has been confirmed numerically up to the fourth order for the triangular element and up to the third order for the tetrahedral element.
基金supported in part by a DOE grant DEFG0205ER25678 and NSF grant DMS-1005441。
文摘Hierarchical bases of arbitrary order for H(div)-conforming triangular and tetrahedral elements are constructedwith the goal of improving the conditioning of the mass and stiffness matrices.For the basis with the triangular element,it is found numerically that the conditioning is acceptable up to the approximation of order four,and is better than a corresponding basis in the dissertation by Sabine Zaglmayr[High Order Finite Element Methods for Electromagnetic Field Computation,Johannes Kepler Universit¨at,Linz,2006].The sparsity of the mass matrices from the newly constructed basis and from the one by Zaglmayr is similar for approximations up to order four.The stiffness matrix with the new basis is much sparser than that with the basis by Zaglmayr for approximations up to order four.For the tetrahedral element,it is identified numerically that the conditioning is acceptable only up to the approximation of order three.Compared with the newly constructed basis for the triangular element,the sparsity of the massmatrices fromthe basis for the tetrahedral element is relatively sparser.
文摘Classical facet elements do not provide an optimal rate of convergence of the numerical solution toward the solution of the exact problem in H(div)-norm for general unstructured meshes containing hexahedra and prisms.We propose two new families of high-order elements for hexahedra,triangular prisms and pyramids that recover the optimal convergence.These elements have compatible restrictions with each other,such that they can be used directly on general hybrid meshes.Moreover the H(div)proposed spaces are completing the De Rham diagram with optimal elements previously constructed for H1 and H(curl)approximation.The obtained pyramidal elements are compared theoretically and numerically with other elements of the literature.Eventually,numerical results demonstrate the efficiency of the finite elements constructed.