This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of...This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of a static output feedback H ∞ controller are given in terms of LMIs. Furthermore, the design method of H ∞ controllers is provided using the solutions to the LMIs.展开更多
针对逆变器的分岔和混沌现象,建立逆变器的离散模型,通过分岔图、Lyapunov指数和折叠图分析非线性行为,并计算出系统的稳定运行范围及混沌运行范围。文中提出一种非奇异终端滑膜控制策略,设计切换面函数,推导逆变器的反馈控制律。最后...针对逆变器的分岔和混沌现象,建立逆变器的离散模型,通过分岔图、Lyapunov指数和折叠图分析非线性行为,并计算出系统的稳定运行范围及混沌运行范围。文中提出一种非奇异终端滑膜控制策略,设计切换面函数,推导逆变器的反馈控制律。最后进行仿真,仿真结果表明:非奇异滑膜控制能够有效抑制系统的混沌行为,从而拓宽了系统稳定工作范围,相比于比例积分控制(proportional integral derivative,PI),稳定范围扩大了80%。由此可以使得逆变器实现稳定工作,有很强的实际应用价值。展开更多
This paper presents a distributed control protocol for consensus control of multi-agent systems(MASs) under external disturbances and network imperfections, including communication delay and random packet dropout. To ...This paper presents a distributed control protocol for consensus control of multi-agent systems(MASs) under external disturbances and network imperfections, including communication delay and random packet dropout. To comply with the discrete nature of networked systems, in contrast to most of the existing work for MASs under network imperfections,the agents are modeled by discrete-time dynamics. The communication network is considered to be undirected, its delay is considered to be time-varying but bounded, and its packet dropout is modeled by a Bernoulli distributed white sequence.Sufficient conditions in terms of linear matrix inequalities(LMIs)for asymptotic mean-square consensus stability are derived under network imperfections without considering external disturbances.A desired disturbance attenuation level in the presence of both external disturbances and network imperfections is also provided.A simulation example is given to verify the effectiveness of the proposed approach in coping with network imperfection and disturbances.展开更多
This paper studies the distributed H∞control problem of identical linear time invariant multi-agent systems subject to external disturbances. A directed graph containing a spanning tree is used to model the communica...This paper studies the distributed H∞control problem of identical linear time invariant multi-agent systems subject to external disturbances. A directed graph containing a spanning tree is used to model the communication topology. Based on the relative states of the neighbor agents and a subset of absolute states of the agents, distributed static H∞controllers are proposed. The concept of an H∞performance region is extended to the directed graph situation. Then the results are used to solve the leader–follower H∞consensus problem. Sufficient conditions are proposed based on bounded real lemma and algebraic graph theory. The effectiveness of the theoretical results is illustrated via numerical simulations.展开更多
A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the...A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the occurrence of sliding mode even when the system is undergoing parameter uncertainties and external disturbance. The resulting sliding mode has the same order as the original system, so that it becomes easy to solve the H∞ control problem by designing a memoryless H∞ state feedback controller. A delay-dependent sufficient condition is proposed in terms of linear matrix inequalities (LMIs), which guarantees the sliding mode robust asymptotically stable and has a noise attenuation level γ in an H∞ sense. The admissible state feedback controller can be found by solving a sequential minimization problem subject to LMI constraints by applying the cone complementary linearization method. This design scheme combines the strong robustness of the sliding mode control with the H∞ norm performance. A numerical example is given to illustrate the effectiveness of the proposed scheme.展开更多
文摘This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of a static output feedback H ∞ controller are given in terms of LMIs. Furthermore, the design method of H ∞ controllers is provided using the solutions to the LMIs.
文摘针对逆变器的分岔和混沌现象,建立逆变器的离散模型,通过分岔图、Lyapunov指数和折叠图分析非线性行为,并计算出系统的稳定运行范围及混沌运行范围。文中提出一种非奇异终端滑膜控制策略,设计切换面函数,推导逆变器的反馈控制律。最后进行仿真,仿真结果表明:非奇异滑膜控制能够有效抑制系统的混沌行为,从而拓宽了系统稳定工作范围,相比于比例积分控制(proportional integral derivative,PI),稳定范围扩大了80%。由此可以使得逆变器实现稳定工作,有很强的实际应用价值。
文摘This paper presents a distributed control protocol for consensus control of multi-agent systems(MASs) under external disturbances and network imperfections, including communication delay and random packet dropout. To comply with the discrete nature of networked systems, in contrast to most of the existing work for MASs under network imperfections,the agents are modeled by discrete-time dynamics. The communication network is considered to be undirected, its delay is considered to be time-varying but bounded, and its packet dropout is modeled by a Bernoulli distributed white sequence.Sufficient conditions in terms of linear matrix inequalities(LMIs)for asymptotic mean-square consensus stability are derived under network imperfections without considering external disturbances.A desired disturbance attenuation level in the presence of both external disturbances and network imperfections is also provided.A simulation example is given to verify the effectiveness of the proposed approach in coping with network imperfection and disturbances.
文摘This paper studies the distributed H∞control problem of identical linear time invariant multi-agent systems subject to external disturbances. A directed graph containing a spanning tree is used to model the communication topology. Based on the relative states of the neighbor agents and a subset of absolute states of the agents, distributed static H∞controllers are proposed. The concept of an H∞performance region is extended to the directed graph situation. Then the results are used to solve the leader–follower H∞consensus problem. Sufficient conditions are proposed based on bounded real lemma and algebraic graph theory. The effectiveness of the theoretical results is illustrated via numerical simulations.
基金This project was supported by the National Natural Science Foundation of China(69874008)
文摘A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the occurrence of sliding mode even when the system is undergoing parameter uncertainties and external disturbance. The resulting sliding mode has the same order as the original system, so that it becomes easy to solve the H∞ control problem by designing a memoryless H∞ state feedback controller. A delay-dependent sufficient condition is proposed in terms of linear matrix inequalities (LMIs), which guarantees the sliding mode robust asymptotically stable and has a noise attenuation level γ in an H∞ sense. The admissible state feedback controller can be found by solving a sequential minimization problem subject to LMI constraints by applying the cone complementary linearization method. This design scheme combines the strong robustness of the sliding mode control with the H∞ norm performance. A numerical example is given to illustrate the effectiveness of the proposed scheme.