In order to improve the seismic performance of adjacent buildings,two types of tuned inerter damper(TID)damping systems for adjacent buildings are proposed,which are composed of springs,inerter devices and dampers in ...In order to improve the seismic performance of adjacent buildings,two types of tuned inerter damper(TID)damping systems for adjacent buildings are proposed,which are composed of springs,inerter devices and dampers in serial or in parallel.The dynamic equations of TID adjacent building damping systems were derived,and the H2 norm criterion was used to optimize and adjust them,so that the system had the optimum damping performance under white noise random excitation.Taking TID frequency ratio and damping ratio as optimization parameters,the optimum analytical solutions of the displacement frequency response of the undamped structure under white noise excitation were obtained.The results showed that compared with the classic TMD,TID could obtain a better damping effect in the adjacent buildings.Comparing the TIDs composed of serial or parallel,it was found that the parallel TIDs had more significant advantages in controlling the peak displacement frequency response,while the H2 norm of the displacement frequency response of the damping system under the coupling of serial TID was smaller.Taking the adjacent building composed of two ten-story frame structures as an example,the displacement and energy collection time history analysis of the adjacent building coupled with the optimum design parameter TIDs were carried out.It was found that TID had a better damping effect in the full-time range compared with the classic TMD.This paper also studied the potential power of TID in adjacent buildings,which can be converted into available power resources during earthquakes.展开更多
This paper investigates the problem of robust optimal H<sub>∞</sub> control for uncertain two-dimensional (2-D) discrete state-delayed systems described by the general model (GM) with norm-bounded uncerta...This paper investigates the problem of robust optimal H<sub>∞</sub> control for uncertain two-dimensional (2-D) discrete state-delayed systems described by the general model (GM) with norm-bounded uncertainties. A sufficient condition for the existence of g-suboptimal robust H<sub><sub></sub></sub><sub>∞</sub> state feedback controllers is established, based on linear matrix inequality (LMI) approach. Moreover, a convex optimization problem is developed to design a robust optimal state feedback controller which minimizes the H<sub><sub><sub></sub></sub></sub><sub>∞</sub> noise attenuation level of the resulting closed-loop system. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed method.展开更多
In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the...In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the solution of an algebraic Riccati equation (ARE) and makes the H∞norm of the closedloop transfer function matrix from disturbance inputs to controlled outputs less than a given constant which ensure the stability of the overall controlled system at each iteration. The given example shows that the convergence of the algorithm is satisfactory.展开更多
A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was establi...A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was established to demonstrate the effectiveness of the new control approach.Magneto-rheological(MR) dampers were designed,manufactured and characterized as available semi-active actuators in the developed semi-active suspension system.The four independent mixed H2/H∞ controllers were devised in order to perform a distributed semi-active control system in the vehicle by which the response velocity and reliability can be improved significantly.The performance of the proposed new approach was investigated in time and frequency domains.A good balance between vehicle's comfort and road holding was achieved.An effective and practical control strategy for semi-active suspension system was thus obtained.This new approach exhibits some advantages in implementation,performance flexibility and robustness compared to existing methods.展开更多
For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mi...For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mixed H_2/H_∞ state feedback attitude control problem of microsatellite based on extended LMI method.Firstly,the microsatellite attitude control system is established and transformed into corresponding state space form.Then,without the equivalence restriction of the two Lyapunov variables of H_2 and H∞performance,this paper introduces additional variables to design the mixed H_2/H_∞ control method based on LMI which can also reduce the conservatives.Finally,numerical simulations are analyzed to show that the proposed method can make the satellite stable within 20 s whether there is additive perturbation of the controller gain or not.The comparative analysis of the simulation results between extended LMI method and traditional LMI method also demonstrates the effectiveness and feasibility of the proposed method in this paper.展开更多
This paper presents the problem of robust H∞?load frequency controller design and robust H¥ based approach called advanced frequency control (AFC). The objective is to split the task of balancing frequency ...This paper presents the problem of robust H∞?load frequency controller design and robust H¥ based approach called advanced frequency control (AFC). The objective is to split the task of balancing frequency deviations introduced by renewable energy source (RES) and load variations according to the capabilities of storage and generators. The problem we address is to design an output feedback controller such that, all admissible parameter uncertainties, the closed-loop system satisfies not only the prespecified H∞? norm constraint on the transfer function from the disturbance input to the system output. The conventional generators mainly balance the low-frequency components and load variations while the energy storage devices compensate the high- frequency components. In order to enable the controller design for storage devices located at buses with no generators, a model for the frequency at such a bus is developed. Then, AEC controllers are synthesized through decentralized static output feedback to reduce the complexity. The conditions for the existence of desired controllers are derived in terms of a linear matrix inequality (LMI) algorithm is improved. From the simulation results, the system responses with the proposed controller are the best transient responses.展开更多
The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the ...The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the servo system control problem is transferred into the problem of robust performance optimizing under regional poles constrains described by linear matrix inequality (LMI). These LMIs are easy to solve through the Matlab LMI-toolbox. Simulations indicate that the controller has excellent dynamic, static and disturbance rejection performance, and the control system is robust and has perfect H2 performance to the bounded external torque disturbance.展开更多
Seven types of activated carbon were used to investigate the effect of their structure on separation of CO2 from(H2 + CO2) gas mixture by the adsorption method at ambient temperature and higher pressures. The resul...Seven types of activated carbon were used to investigate the effect of their structure on separation of CO2 from(H2 + CO2) gas mixture by the adsorption method at ambient temperature and higher pressures. The results showed that the limiting factors for separation of CO2 from 53.6 mol% H2 + 46.4 mol% CO2 mixture and from 85.1 mol% H2 + 14.9 mol% CO2 mixture were different at 20 °C and about 2 MPa. The best separation result could be achieved when the pore diameter of the activated carbon ranged from 0.77 to 1.20 nm, and the median particle size was about2.07 lm for 53.6 mol% H2 + 46.4 mol% CO2 mixture and 1.41 lm for 85.1 mol% H2 + 14.9 mol% CO2 mixture. The effect of specific area and pore diameter of activated carbon on separation CO2 from 53.6 mol% H2 + 46.4 mol% CO2 mixture was more significant than that from 85.1 mol% H2 + 14.9 mol% CO2 mixture. CO2 in the gas phase can be decreased from 46.4 mol% to 2.3 mol%–4.3 mol% with a two-stage separation process.展开更多
The optimal use of intervention strategies to mitigate the spread of Nipah Virus (NiV) using optimal control technique is studied in this paper. First of all we formulate a dynamic model of NiV infections with variabl...The optimal use of intervention strategies to mitigate the spread of Nipah Virus (NiV) using optimal control technique is studied in this paper. First of all we formulate a dynamic model of NiV infections with variable size population and two control strategies where creating awareness and treatment are considered as controls. We intend to find the optimal combination of these two control strategies that will minimize the cost of the two control measures and as a result the number of infectious individuals will decrease. We establish the existence for the optimal controls and Pontryagin’s maximum principle is used to characterize the optimal controls. The numerical simulation suggests that optimal control technique is much more effective to minimize the infected individuals and the corresponding cost of the two controls. It is also monitored that in the case of high contact rate, controls have to work for longer period of time to get the desired result. Numerical simulation reveals that the spread of Nipah virus can be controlled effectively if we apply control strategy at early stage.展开更多
This paper proposes an efficient method for designing accurate structure-specified mixed H2/H∞ optimal controllers for systems with uncertainties and disturbance using particle swarm (PSO) algorithm. It is designed t...This paper proposes an efficient method for designing accurate structure-specified mixed H2/H∞ optimal controllers for systems with uncertainties and disturbance using particle swarm (PSO) algorithm. It is designed to find a suitable controller that minimizes the performance index of error signal subject to an unequal constraint on the norm of the closed-loop system. Although the mixed H2/H∞ for the output feedback approach control is considered as a robust and optimal control technique, the design process normally comes up with a complex and non-convex optimization problem, which is difficult to solve by the conventional optimization methods. The PSO can efficiently solve design problems of multi-input-multi-output (MIMO) optimal control systems, which is very suitable for practical engineering designs. It is used to search for parameters of a structure-specified controller, which satisfies mixed performance index. The simulation and experimental results show high feasibility, robustness and practical value compared with the conventional proportional-integral-derivative (PID) and proportional-Integral (PI) controller, and the proposed algorithm is also more efficient compared with the genetic algorithm (GA).展开更多
A necessary maximum principle is given for nonzero-sum stochastic Oltterential games with random jumps. The result is applied to solve the H2/H∞ control problem of stochastic systems with random jumps. A necessary an...A necessary maximum principle is given for nonzero-sum stochastic Oltterential games with random jumps. The result is applied to solve the H2/H∞ control problem of stochastic systems with random jumps. A necessary and sufficient condition for the existence of a unique solution to the H2/H∞ control problem is derived. The resulting solution is given by the solution of an uncontrolled forward backward stochastic differential equation with random jumps.展开更多
This paper is concerned with the problem of designing robust H∞and H2static output feedback controllers for a class of discrete-time piecewise-affine singular systems with norm-bounded time-varying parameters uncerta...This paper is concerned with the problem of designing robust H∞and H2static output feedback controllers for a class of discrete-time piecewise-affine singular systems with norm-bounded time-varying parameters uncertainties. Based on a piecewise singular Lyapunov function combined with S-procedure,Projection lemma and some matrix inequality convexifying techniques,sufficient conditions in terms of linear matrix inequalities are given for the existence of an output-feedback controller for the discrete-time piecewiseaffine singular systems with a prescribed H∞disturbance attenuation level,and the H2norm is smaller than a given positive number. It is shown that the controller gains can be obtained by solving a family of LMIs parameterized by one or two scalar variables. The numerical examples are given to illustrate the effectiveness of the proposed design methods.展开更多
基金This research was funded by the Natural Science Research Project of Higher Education Institutions in Anhui Province(Grant No.2022AH040045)the Anhui Provincial Natural Science Foundation(Grant No.2008085QE245)the Project of Science and Technology Plan of Department of Housing and Urban-Rural Development of Anhui Province(Grant No.2021-YF22).
文摘In order to improve the seismic performance of adjacent buildings,two types of tuned inerter damper(TID)damping systems for adjacent buildings are proposed,which are composed of springs,inerter devices and dampers in serial or in parallel.The dynamic equations of TID adjacent building damping systems were derived,and the H2 norm criterion was used to optimize and adjust them,so that the system had the optimum damping performance under white noise random excitation.Taking TID frequency ratio and damping ratio as optimization parameters,the optimum analytical solutions of the displacement frequency response of the undamped structure under white noise excitation were obtained.The results showed that compared with the classic TMD,TID could obtain a better damping effect in the adjacent buildings.Comparing the TIDs composed of serial or parallel,it was found that the parallel TIDs had more significant advantages in controlling the peak displacement frequency response,while the H2 norm of the displacement frequency response of the damping system under the coupling of serial TID was smaller.Taking the adjacent building composed of two ten-story frame structures as an example,the displacement and energy collection time history analysis of the adjacent building coupled with the optimum design parameter TIDs were carried out.It was found that TID had a better damping effect in the full-time range compared with the classic TMD.This paper also studied the potential power of TID in adjacent buildings,which can be converted into available power resources during earthquakes.
文摘This paper investigates the problem of robust optimal H<sub>∞</sub> control for uncertain two-dimensional (2-D) discrete state-delayed systems described by the general model (GM) with norm-bounded uncertainties. A sufficient condition for the existence of g-suboptimal robust H<sub><sub></sub></sub><sub>∞</sub> state feedback controllers is established, based on linear matrix inequality (LMI) approach. Moreover, a convex optimization problem is developed to design a robust optimal state feedback controller which minimizes the H<sub><sub><sub></sub></sub></sub><sub>∞</sub> noise attenuation level of the resulting closed-loop system. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed method.
基金theNational+4 种基金 Natural Science Foundation of China
文摘In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the solution of an algebraic Riccati equation (ARE) and makes the H∞norm of the closedloop transfer function matrix from disturbance inputs to controlled outputs less than a given constant which ensure the stability of the overall controlled system at each iteration. The given example shows that the convergence of the algorithm is satisfactory.
基金Project(50775225) supported by the National Natural Science Foundation of ChinaProjects(CSTC, 2008AC6097, 2008BA6025) supported by National Natural Science Foundation of Chongqing, China
文摘A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was established to demonstrate the effectiveness of the new control approach.Magneto-rheological(MR) dampers were designed,manufactured and characterized as available semi-active actuators in the developed semi-active suspension system.The four independent mixed H2/H∞ controllers were devised in order to perform a distributed semi-active control system in the vehicle by which the response velocity and reliability can be improved significantly.The performance of the proposed new approach was investigated in time and frequency domains.A good balance between vehicle's comfort and road holding was achieved.An effective and practical control strategy for semi-active suspension system was thus obtained.This new approach exhibits some advantages in implementation,performance flexibility and robustness compared to existing methods.
文摘For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mixed H_2/H_∞ state feedback attitude control problem of microsatellite based on extended LMI method.Firstly,the microsatellite attitude control system is established and transformed into corresponding state space form.Then,without the equivalence restriction of the two Lyapunov variables of H_2 and H∞performance,this paper introduces additional variables to design the mixed H_2/H_∞ control method based on LMI which can also reduce the conservatives.Finally,numerical simulations are analyzed to show that the proposed method can make the satellite stable within 20 s whether there is additive perturbation of the controller gain or not.The comparative analysis of the simulation results between extended LMI method and traditional LMI method also demonstrates the effectiveness and feasibility of the proposed method in this paper.
文摘This paper presents the problem of robust H∞?load frequency controller design and robust H¥ based approach called advanced frequency control (AFC). The objective is to split the task of balancing frequency deviations introduced by renewable energy source (RES) and load variations according to the capabilities of storage and generators. The problem we address is to design an output feedback controller such that, all admissible parameter uncertainties, the closed-loop system satisfies not only the prespecified H∞? norm constraint on the transfer function from the disturbance input to the system output. The conventional generators mainly balance the low-frequency components and load variations while the energy storage devices compensate the high- frequency components. In order to enable the controller design for storage devices located at buses with no generators, a model for the frequency at such a bus is developed. Then, AEC controllers are synthesized through decentralized static output feedback to reduce the complexity. The conditions for the existence of desired controllers are derived in terms of a linear matrix inequality (LMI) algorithm is improved. From the simulation results, the system responses with the proposed controller are the best transient responses.
文摘The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the servo system control problem is transferred into the problem of robust performance optimizing under regional poles constrains described by linear matrix inequality (LMI). These LMIs are easy to solve through the Matlab LMI-toolbox. Simulations indicate that the controller has excellent dynamic, static and disturbance rejection performance, and the control system is robust and has perfect H2 performance to the bounded external torque disturbance.
基金the Talent Scientific Research Fund of LSHU (No. 2016XJJ-015)the fund of the Liaoning Provincial Department of Education (No. L2017LQN005)the National Natural Science Foundation of China (No. 21606120)
文摘Seven types of activated carbon were used to investigate the effect of their structure on separation of CO2 from(H2 + CO2) gas mixture by the adsorption method at ambient temperature and higher pressures. The results showed that the limiting factors for separation of CO2 from 53.6 mol% H2 + 46.4 mol% CO2 mixture and from 85.1 mol% H2 + 14.9 mol% CO2 mixture were different at 20 °C and about 2 MPa. The best separation result could be achieved when the pore diameter of the activated carbon ranged from 0.77 to 1.20 nm, and the median particle size was about2.07 lm for 53.6 mol% H2 + 46.4 mol% CO2 mixture and 1.41 lm for 85.1 mol% H2 + 14.9 mol% CO2 mixture. The effect of specific area and pore diameter of activated carbon on separation CO2 from 53.6 mol% H2 + 46.4 mol% CO2 mixture was more significant than that from 85.1 mol% H2 + 14.9 mol% CO2 mixture. CO2 in the gas phase can be decreased from 46.4 mol% to 2.3 mol%–4.3 mol% with a two-stage separation process.
文摘The optimal use of intervention strategies to mitigate the spread of Nipah Virus (NiV) using optimal control technique is studied in this paper. First of all we formulate a dynamic model of NiV infections with variable size population and two control strategies where creating awareness and treatment are considered as controls. We intend to find the optimal combination of these two control strategies that will minimize the cost of the two control measures and as a result the number of infectious individuals will decrease. We establish the existence for the optimal controls and Pontryagin’s maximum principle is used to characterize the optimal controls. The numerical simulation suggests that optimal control technique is much more effective to minimize the infected individuals and the corresponding cost of the two controls. It is also monitored that in the case of high contact rate, controls have to work for longer period of time to get the desired result. Numerical simulation reveals that the spread of Nipah virus can be controlled effectively if we apply control strategy at early stage.
文摘This paper proposes an efficient method for designing accurate structure-specified mixed H2/H∞ optimal controllers for systems with uncertainties and disturbance using particle swarm (PSO) algorithm. It is designed to find a suitable controller that minimizes the performance index of error signal subject to an unequal constraint on the norm of the closed-loop system. Although the mixed H2/H∞ for the output feedback approach control is considered as a robust and optimal control technique, the design process normally comes up with a complex and non-convex optimization problem, which is difficult to solve by the conventional optimization methods. The PSO can efficiently solve design problems of multi-input-multi-output (MIMO) optimal control systems, which is very suitable for practical engineering designs. It is used to search for parameters of a structure-specified controller, which satisfies mixed performance index. The simulation and experimental results show high feasibility, robustness and practical value compared with the conventional proportional-integral-derivative (PID) and proportional-Integral (PI) controller, and the proposed algorithm is also more efficient compared with the genetic algorithm (GA).
基金supported by the Doctoral foundation of University of Jinan(XBS1213)the National Natural Science Foundation of China(11101242)
文摘A necessary maximum principle is given for nonzero-sum stochastic Oltterential games with random jumps. The result is applied to solve the H2/H∞ control problem of stochastic systems with random jumps. A necessary and sufficient condition for the existence of a unique solution to the H2/H∞ control problem is derived. The resulting solution is given by the solution of an uncontrolled forward backward stochastic differential equation with random jumps.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61004038)
文摘This paper is concerned with the problem of designing robust H∞and H2static output feedback controllers for a class of discrete-time piecewise-affine singular systems with norm-bounded time-varying parameters uncertainties. Based on a piecewise singular Lyapunov function combined with S-procedure,Projection lemma and some matrix inequality convexifying techniques,sufficient conditions in terms of linear matrix inequalities are given for the existence of an output-feedback controller for the discrete-time piecewiseaffine singular systems with a prescribed H∞disturbance attenuation level,and the H2norm is smaller than a given positive number. It is shown that the controller gains can be obtained by solving a family of LMIs parameterized by one or two scalar variables. The numerical examples are given to illustrate the effectiveness of the proposed design methods.