Tongting coal(TTC) was exhaustively extracted with carbon disulfide and N-melthy-2-pyrolidinone(CS 2 /NMP) mixed solvents to afford brown particles of extract,which was characterized with proximate analyzer,transmissi...Tongting coal(TTC) was exhaustively extracted with carbon disulfide and N-melthy-2-pyrolidinone(CS 2 /NMP) mixed solvents to afford brown particles of extract,which was characterized with proximate analyzer,transmission electron microscope(TEM) and Fourier transform infrared(FTIR) spectrometer.The results show that the nanometer particles of extract,which were free of ash,are superfine and superclean with tract content of 0.02% A d and particles size of about 100-150 nm.TTC and extract were then subject to oxidation with H 2 O 2 and oxidation products were subsequently analyzed with FTIR and gas chromatography/mass spectrometer(GC/MS).The results show that extract is more reactive with H 2 O 2 in comparison to TTC and richer in oxygen-containing species including phenols,alcohols,ethers,esters,carboxylic acids and anhydrides.展开更多
Nitric oxide(NO) from flue gas is hard to remove because of low solubility and reactivity. A new technology for photocatalytic oxidation of NO using ultraviolet(UV)/TiO2/H2O2 process is studied in an efficient laborat...Nitric oxide(NO) from flue gas is hard to remove because of low solubility and reactivity. A new technology for photocatalytic oxidation of NO using ultraviolet(UV)/TiO2/H2O2 process is studied in an efficient laboratory-scale reactor. Effects of several key operational parameters on NO removal efficiency are studied, including TiO2 content, H2O2 initial concentration, UV lamp power, NO initial content, oxygen volume fraction and TiO2/H2O2 solution volume. The results illustrate that the NO removal efficiency increases with the increasing of H2O2 initial concentration or UV lamp power. Meanwhile, a lower NO initial content or a higher TiO2/H2O2 solution volume will result in higher NO removal efficiency. In addition, oxygen volume fraction has a little effect.The highest NO removal efficiency is achieved at the TiO2 content of 0.75 g/L, H2O2 initial concentration of 2.5 mol/L, UV lamp power of 36 W, NO initial content of 206×10-6 and TiO2/H2O2 solution volume of 600 m L. It is beneficial for the development and application of NO removal from coal-fired flue gas with UV/TiO2/H2O2 process.展开更多
The use of nanostructured composites as catalyst supports is a promising route to prepare catalysts with high selectivity and productivity. In this work, reduced graphene oxide-TiO_2(rGP-x) composites with a variation...The use of nanostructured composites as catalyst supports is a promising route to prepare catalysts with high selectivity and productivity. In this work, reduced graphene oxide-TiO_2(rGP-x) composites with a variation of reduced graphene oxide(rGO) content were synthesized by hydrothermal method. Pd/rGP-x catalysts were prepared in incipient-wetness impregnation method for the direct synthesis of H_2O_2 from H2 and O_2. The morphology and electronic properties of catalysts were investigated by XPS, TEM, and Raman spectroscopy.The ratio of Pd^(2+)/Pd^0 and the hydrophobicity of the catalysts were increased with the rising content of rGO. As the amount of rGO in the catalysts varied in the range of 0.025 wt%–2 wt%, the selectivity of H_2O_2 exhibited a tendency of increasing firstly and then decreasing from 0.1 wt% to 2 wt%. It indicates that good catalytic performance for H_2O_2 synthesis can be achieved only when appropriate amount of rGO is introduced. The H_2O_2 selectivity and productivity of Pd/r GP-0.025 both improved remarkably compared with Pd/P25. This enhancement originated from the combined effects of the proper ratio of Pd^(2+)/Pd^0 and hydrophobicity of the catalyst.展开更多
Because of the highly toxic cyanide in the gold cyanide residues,cyanide must be removed for environmental protection.The process mineralogy of residues was studied firstly,and then cyanide removal was carried out by ...Because of the highly toxic cyanide in the gold cyanide residues,cyanide must be removed for environmental protection.The process mineralogy of residues was studied firstly,and then cyanide removal was carried out by three chemical methods.The results showed that the residue mainly contained Si,S and Fe.Pyrite was the main metallic mineral,and the iron-complex cyanides make cyanide removal difficult.The minerals in residues were in ultrafine particle size with high monomer dissociation degrees.In H_(2)O_(2)oxidation process,the self-decomposition and side reactions resulted in high consumption of H_(2)O_(2).In Na_(2)S_(2)O_(5)-air oxidation process,the time for complete process was long because of the reactions between Na_(2)S_(2)O_(5)and O_(2).Na_(2)SO_(3)oxidation method was found to be a new method for cyanide removal without air inflation device.The cyanide content was reduced to the national standard level in 90 min at pH 9.0 with optimum Na_(2)SO_(3)dose of 2.0 g/L.展开更多
基金subsidized by the National Natural Science Foundation of China (Nos.50474066,50874108 and 50921002)the Fundamental Research Funds for the Central Universities(No.2010LKHX01)the National Basic Research Program of China (No.2012CB214900)
文摘Tongting coal(TTC) was exhaustively extracted with carbon disulfide and N-melthy-2-pyrolidinone(CS 2 /NMP) mixed solvents to afford brown particles of extract,which was characterized with proximate analyzer,transmission electron microscope(TEM) and Fourier transform infrared(FTIR) spectrometer.The results show that the nanometer particles of extract,which were free of ash,are superfine and superclean with tract content of 0.02% A d and particles size of about 100-150 nm.TTC and extract were then subject to oxidation with H 2 O 2 and oxidation products were subsequently analyzed with FTIR and gas chromatography/mass spectrometer(GC/MS).The results show that extract is more reactive with H 2 O 2 in comparison to TTC and richer in oxygen-containing species including phenols,alcohols,ethers,esters,carboxylic acids and anhydrides.
基金Project(2011CB201505)supported by the National Key Basic Research Program of ChinaProject(BA2011031)supported by the Special Fund of Transformation of Scientific and Technological Achievements of Jiangsu Province,China
文摘Nitric oxide(NO) from flue gas is hard to remove because of low solubility and reactivity. A new technology for photocatalytic oxidation of NO using ultraviolet(UV)/TiO2/H2O2 process is studied in an efficient laboratory-scale reactor. Effects of several key operational parameters on NO removal efficiency are studied, including TiO2 content, H2O2 initial concentration, UV lamp power, NO initial content, oxygen volume fraction and TiO2/H2O2 solution volume. The results illustrate that the NO removal efficiency increases with the increasing of H2O2 initial concentration or UV lamp power. Meanwhile, a lower NO initial content or a higher TiO2/H2O2 solution volume will result in higher NO removal efficiency. In addition, oxygen volume fraction has a little effect.The highest NO removal efficiency is achieved at the TiO2 content of 0.75 g/L, H2O2 initial concentration of 2.5 mol/L, UV lamp power of 36 W, NO initial content of 206×10-6 and TiO2/H2O2 solution volume of 600 m L. It is beneficial for the development and application of NO removal from coal-fired flue gas with UV/TiO2/H2O2 process.
基金Supported by the National Key Basic Research Program of China(2013CB733505,2013CB733501)the National Natural Science Foundation of China(91334202)+2 种基金the Natural Science Foundation of Jiangsu Province of China(BK2012421,BK20130062)the Research Fund for the Doctoral Program of Higher Education of China(20123221120015)the Project for Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The use of nanostructured composites as catalyst supports is a promising route to prepare catalysts with high selectivity and productivity. In this work, reduced graphene oxide-TiO_2(rGP-x) composites with a variation of reduced graphene oxide(rGO) content were synthesized by hydrothermal method. Pd/rGP-x catalysts were prepared in incipient-wetness impregnation method for the direct synthesis of H_2O_2 from H2 and O_2. The morphology and electronic properties of catalysts were investigated by XPS, TEM, and Raman spectroscopy.The ratio of Pd^(2+)/Pd^0 and the hydrophobicity of the catalysts were increased with the rising content of rGO. As the amount of rGO in the catalysts varied in the range of 0.025 wt%–2 wt%, the selectivity of H_2O_2 exhibited a tendency of increasing firstly and then decreasing from 0.1 wt% to 2 wt%. It indicates that good catalytic performance for H_2O_2 synthesis can be achieved only when appropriate amount of rGO is introduced. The H_2O_2 selectivity and productivity of Pd/r GP-0.025 both improved remarkably compared with Pd/P25. This enhancement originated from the combined effects of the proper ratio of Pd^(2+)/Pd^0 and hydrophobicity of the catalyst.
基金financially supported by the National Key R&D Program of China(No.2018YFC1902002)the Special Fund for the National Natural Science Foundation of China(No.U1608254)。
文摘Because of the highly toxic cyanide in the gold cyanide residues,cyanide must be removed for environmental protection.The process mineralogy of residues was studied firstly,and then cyanide removal was carried out by three chemical methods.The results showed that the residue mainly contained Si,S and Fe.Pyrite was the main metallic mineral,and the iron-complex cyanides make cyanide removal difficult.The minerals in residues were in ultrafine particle size with high monomer dissociation degrees.In H_(2)O_(2)oxidation process,the self-decomposition and side reactions resulted in high consumption of H_(2)O_(2).In Na_(2)S_(2)O_(5)-air oxidation process,the time for complete process was long because of the reactions between Na_(2)S_(2)O_(5)and O_(2).Na_(2)SO_(3)oxidation method was found to be a new method for cyanide removal without air inflation device.The cyanide content was reduced to the national standard level in 90 min at pH 9.0 with optimum Na_(2)SO_(3)dose of 2.0 g/L.