An innovative technology,nitric acid pressure leaching of limonitic laterite ores,was proposed by our research team.The HNO3 regeneration is considerable significance for the improvement of the proposed technology and...An innovative technology,nitric acid pressure leaching of limonitic laterite ores,was proposed by our research team.The HNO3 regeneration is considerable significance for the improvement of the proposed technology and its commercial application,but it has not been systematically investigated.Herein,regenerating HNO3 from Ca(NO3)2 solution with low-cost H2SO4,and simultaneous synthesis of fibrous CaSO4·2H2O by-products were studied.As a theoretical basis,the solubility of CaSO4·2H2O in HNO3 medium is studied.It is concluded that the solubility of CaSO4·2H2O increases with increasing temperature or increasing HNO3 concentration,which has considerable guiding significance for the subsequent experimental research and analysis.Then,the effects of various factors on the residual Ca^2+ concentration of filtrate,the regenerated HNO3 concentration and the morphology of synthesized products are investigated using ICP-AES and SEM.And the effect mechanism is also analyzed.The results indicate the regenerated HNO3 concentration reaches 116 g/L with the residual Ca^2+ concentration being 9.7 g/L at the optimum conditions.Moreover,fibrous CaSO4·2H2O by-products with high aspect ratios(length,406.32μm;diameter,14.71μm;aspect ratio,27.62)can be simultaneously synthesized.展开更多
Three different regeneration processes including hydrogen or nitrogen purging and coke-burning treatment were used to restore the Pt-Sn/γ-AlOcatalysts, through which propane dehydrogenation reaction was performed in ...Three different regeneration processes including hydrogen or nitrogen purging and coke-burning treatment were used to restore the Pt-Sn/γ-AlOcatalysts, through which propane dehydrogenation reaction was performed in a consecutive reaction-regeneration mode. It was found that the catalyst using hydrogen regeneration showed the best stability compared with those regenerated by nitrogen purging and coke-burning treatment, suggesting that hydrogen regeneration is an effective approach for maintaining the performance of Pt-Sn/γ-AlOcatalysts in propane dehydrogenation reaction. The effect of different regeneration atmospheres on the metal active center and the coke deposition was investigated by XRD,TEM, N-physisorption, TPO, TG and Raman technologies, and the results revealed that hydrogen or nitrogen regeneration resulted in little impact on the size and structure of metal active center, retaining the effective Pt Sn phase over the catalyst. Moreover, hydrogen regeneration not only removed the low dense components of the coke, but also altered the property of the residual coke through hydrogenation, leading to a higher mobility of coke, and thus a higher accessibility of the metal active centers. Whereas nitrogen regeneration only removed the low dense components of the coke. Although coke-burning regeneration caused a thorough coke removal, the catalyst subjected to repeated redox exhibited poor stability due to metal agglomeration, phase segregation and the resulting large PtSn particle and core-shell structure with a Sn-rich surface.展开更多
A wide variety of aldoximes and ketoximes were regenerated to corresponding carbonyl compounds with Al(NO3)3·9H2O in presence of catalytic amounts of NaBr in CH2Cl2 at room temperature.
Electrocatalytic reduction of CO_(2)(CO_(2)RR)to multicarbon products is an efficient approach for ad-dressing the energy crisis and achieving carbon neutrality.In H-cells,achieving high-current C_(2)products is chall...Electrocatalytic reduction of CO_(2)(CO_(2)RR)to multicarbon products is an efficient approach for ad-dressing the energy crisis and achieving carbon neutrality.In H-cells,achieving high-current C_(2)products is challenging because of the inefficient mass transfer of the catalyst and the presence of the hydrogen evolution reaction(HER).In this study,dendritic Cu/Cu_(2)O with abundant Cu^(0)/Cu^(+)interfaces and numerous dendritic curves was synthesized in a CO_(2)atmosphere,resulting in the high selectivity and current density of the C_(2)products.Dendritic Cu/Cu_(2)O achieved a C_(2)Faradaic efficiency of 69.8%and a C_(2)partial current density of 129.5 mA cm^(-2)in an H-cell.Finite element simulations showed that a dendritic structure with a high curvature generates a strong electric field,leading to a localized CO_(2)concentration.Additionally,DRT analysis showed that a dendritic struc-ture with a high curvature actively adsorbed the surrounding high concentration of CO_(2),enhancing the mass transfer rate and achieving a high current density.During the experiment,the impact of the electronic structure on the performance of the catalyst was investigated by varying the atomic ratio of Cu^(0)/Cu^(+) on the catalyst surface,which resulted in improved ethylene selectivity.Under the optimal atomic ratio of Cu^(0)/Cu^(+),the charge transfer resistance was minimized,and the desorption rate of the intermediates was low,favoring C_(2) generation.Density functional theory calculations indicated that the Cu^(0)/Cu^(+) interfaces exhibited a lower Gibbs free energy for the rate-determining step,enhancing C_(2)H_(4) formation.The Cu/Cu_(2)O catalyst also exhibited a low Cu d-band center,which enhanced the adsorption stability of *CO on the surface and facilitated C_(2)formation.This observa-tion explained the higher yield of C_(2) products at the Cu^(0)/Cu^(+) interface than that of H_(2) under rapid mass transfer.The results of the net present value model showed that the H-cell holds promising industrial prospects,contingent upon it being a catalyst with both high selectivity and high current density.This approach of integrating the structure and composition provides new insights for ad-vancing the CO_(2)RR towards high-current C_(2) products.展开更多
Aluminum recovery is a key issue for the overall recycling of valuable metals from spent catalysts. This paper focuses on the recovery and regeneration of alumina with high additional value from the spent hydrodesulfu...Aluminum recovery is a key issue for the overall recycling of valuable metals from spent catalysts. This paper focuses on the recovery and regeneration of alumina with high additional value from the spent hydrodesulfurization catalyst CoMo/Al_2O_3. The results indicate that 98.13% alumina is successfully leached from the treated spent catalysts by an alkaline leaching process under the conditions of 5 mol·L^(-1) sodium hydroxide,a liquid/solid ratio of 20 ml·g^(-1),a temperature of 160 0 C and a reaction time of 4 h. In the leaching residue, no difficult leaching compound is found and cobalt and nickel are enriched,both of which are conducive to the subsequent metal recovery step. The reaction order of aluminum leaching is 0.99. This reaction fits well with the interfacial chemical reaction model, and its apparent activation energy is calculated as 45.50 kJ mol^(-1). Subsequently, y-Al_2O_3 with a high specific surface area of 278.3 m^2·g^(-1), a mean size of 2.2 μm and an average pore size of 3.10 nm is then regenerated from the lixivium, indicating its suitability for use as a catalyst carrier. The recovery and regeneration of alumina from spent catalysts can not only significantly contribute to the total recycling of such hazardous spent catalysts but also provide a new approach for the preparation of y-Al_2O_3 with a high specific surface area using spent catalysts as the aluminum sources.展开更多
To improve the working and living environment of submarine crews, an integrated system of CO2 removal and O2 regeneration was designed to work under experimental conditions for 50 people in a submarine cabin during pr...To improve the working and living environment of submarine crews, an integrated system of CO2 removal and O2 regeneration was designed to work under experimental conditions for 50 people in a submarine cabin during prolonged voyages. The integrated system comprises a solid amine water desorption (SAWD) unit for CO2 collection and concentration, a Sabatier reactor for CO2 reduction and a solid polymer electrolyte (SPE) unit for O2 regeneration by electrolysis. The performances of the SAWD-Sabatier-SPE integrated system were investigated. The experimental results from the SAWD unit showed that the average CO2 concentration in the CO2 storage tank was more than 96% and the outlet CO2 concentration was nearly zero in the first 45 min, and less than 1/10 of inlet CO2 after 60 min when input CO2 was 0.5% (1000 L). About 950 L of CO2 was recovered with a recovery rate of 92%-97%. The output CO2 concentration was less than 0.2%, which showed that the adsorption-desorption performance of this unit was excellent. In the CO2 reduction unit we investigated mainly the start-up and reaction performance of the Sabatier reactor. The start-up time of the Sabatier reactor was 6, 8 and 10 rain when the start-up temperature was 187.3, 179.5 and 168 ℃, respectively. The product water was colorless, transparent, and had a pH of 6.9-7.5, and an electrical conductivity of 80μs/cm. The sum of the concentration of metal ions (Ru^3+, Al^3+, Pb^2+) was 0.028% and that of nonmetal ions (Cl^-, SO4^2-) was 0.05%. In the O2 regeneration unit, the O2 generation rate was 0.48 m^3/d and the quantity was 2400 L, sufficient to meet the submariners' basic oxygen demands. These results may be useful as a basis for establishing CO2-1evel limits and O2 regeneration systems in submarines or similar enclosed compartments during prolonged voyages.展开更多
MnOx-CeO2-Al2O3 mixed oxides were prepared by impregnating manganese and cerium precursors on alumina powders via a sol- gel deposition method. The oxide catalyst exhibited a poor resistance to sulfur dioxide after th...MnOx-CeO2-Al2O3 mixed oxides were prepared by impregnating manganese and cerium precursors on alumina powders via a sol- gel deposition method. The oxide catalyst exhibited a poor resistance to sulfur dioxide after the treatment in 100 ppm SO2/air at 350 °C for 50 h. The formation of manganese sulfate and especially cerium sulfate reduced the availability of surface active metal oxides, blocked the pore structure and decreased the surface area of the catalyst. These changes in chemical and structural and textural properties resulted in a severe loss in the activities of the sulfated catalyst for NO and soot oxidation. The decomposition of sulfates was almost complete during the calcina-tion in air at 800 °C for 30 min, which partially recovered the surface active sites and the catalyst surface area despite the significant sintering of metal oxides. Consequently, the NOx-assisted soot oxidation activity of the catalyst was regenerated to some extent by the oxidation treatment.展开更多
The relationship between hydrogen peroxide (H 2O 2) and endopeptidase(EP) in wheat ( Triticum aestivum L. cv. Yanmai 158) leaves was studied during natural and artificial aging. Rapid accumulation of endogeno...The relationship between hydrogen peroxide (H 2O 2) and endopeptidase(EP) in wheat ( Triticum aestivum L. cv. Yanmai 158) leaves was studied during natural and artificial aging. Rapid accumulation of endogenous H 2O 2 and marked increase of EP activity were observed during the later phase of aging. A new EP isozyme with higher activity was detected by electrophoresis on polyacrylamide gels containing denatured heamoglobin. With the increase of exogenous H 2O 2, the activity of EP increased at first and then decreased.展开更多
The possible physiological mechanism of enhancement of cold tolerance by salicylic acid (SA) in banana seedlings ( Musa acuminata cv. Williams 8188) was explored. Measurements of leakage electrolyte after 2 d of re...The possible physiological mechanism of enhancement of cold tolerance by salicylic acid (SA) in banana seedlings ( Musa acuminata cv. Williams 8188) was explored. Measurements of leakage electrolyte after 2 d of recovery at 30/22 ℃ (day/night) following 3 d of cold stress at 7 ℃ showed that pretreatment with hydroponic solution containing SA 0.3-0.9 mmol/L as foliar spray under normal growth conditions (30/22 ℃) could significantly enhance cold tolerance of banana plants. The highest enhancing effect of SA occurred at 0.5 mmol/L and it showed the lowest leakage rate of electrolyte or smaller leaf wilting area after 2 d of recovery at normal temperature from 3 d of 7 ℃ or 5 ℃ cold stress. Higher concentrations (≥2.5 mmol/L) of SA, however, caused more electrolyte leakage, indicating that they aggravated chilling damage. Enhanced cold tolerance by SA could be related to H 2O 2 metabolism. Compared with water_treated seedlings (control), SA 0.5 mmol/L treatment inhibited activities of catalase (CAT) and ascorbate peroxidase (APX), increased peroxidase (POX) activity, but did not affect the activity of superoxide dismutase (SOD) under normal growth conditions, and these changes might lead to an accumulation of H 2O 2, whereas SA pretreatment enhanced the activities of CAT and APX, and reduced the increase in productions of H 2O 2 and thiobarbituric acid_reaction substances (TBARS) during subsequent 7 ℃ cold stress and recovery periods. Exogenous H 2O 2 treatments (1.5 -2.5 mmol/L) also increased cold tolerance of banana seedlings. Furthermore, pretreatment of banana seedlings with dimethylthiourea (a trap for H 2O 2) significantly inhibited cold tolerance induced by SA. These results suggested that endogenous H 2O 2 may be required for SA_enhanced cold tolerance. The significance of the interaction of SA, H 2O 2 and H 2O 2_metabolizing enzymes during cold stress has been discussed.展开更多
Rho kinase (ROCK) was the first downstream Rho effector found to mediate RhoA-induced actin cytoskeletal changes through effects on myosin light chain phosphorylation. There is abundant evidence that the ROCK pathwa...Rho kinase (ROCK) was the first downstream Rho effector found to mediate RhoA-induced actin cytoskeletal changes through effects on myosin light chain phosphorylation. There is abundant evidence that the ROCK pathway participates in the pathogenesis of retinal endothelial injury and proliferative epiretinal membrane traction. In this study, we investigated the effect of the ROCK pathway inhibitor Y-27632 on retinal Müller cells subjected to hypoxia or oxidative stress. Müller cells were subjected to hypoxia or oxidative stress by exposure to CoCl2 or H2O2. After a 24-hour treatment with Y-27632, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was used to assess the survival of Müller cells. Hoechst 33258 was used to detect apoptosis, while 2′,7′-dichlorodihydrofluorescein diacetate was used to measure reactive oxygen species generation. A transwell chamber system was used to examine the migration ability of Müller cells. Western blot assay was used to detect the expression levels of α-smooth muscle actin, glutamine synthetase and vimentin. After treatment with Y-27632, Müller cells subjected to hypoxia or oxidative stress exhibited a morphology similar to control cells. Y-27632 reduced apoptosis, α-smooth muscle actin expression and reactive oxygen species generation under oxidative stress, and it reduced cell migration under hypoxia. Y-27632 also upregulated glutamine synthetase expression under hypoxia but did not impact vimentin expression. These findings suggest that Y-27632 protects Müller cells against cellular injury caused by oxidative stress and hypoxia by inhibiting the ROCK pathway.展开更多
The solution of H 2O 2 is proposed to post-treat thick porous silicon (PS) films.The prepared PS film as the cathode is applied about 10mA/cm 2 current in mixture of ethanol,HF,and H 2O 2 solutions,which is expec...The solution of H 2O 2 is proposed to post-treat thick porous silicon (PS) films.The prepared PS film as the cathode is applied about 10mA/cm 2 current in mixture of ethanol,HF,and H 2O 2 solutions,which is expected to improve the stability and the smoothness of the surface and the mechanical property of the thick porous silicon films.The microstructure of the PS thick films with thicknesse of 20μm and 70μm has been studied.The SEM images show significant improved smoothness on surface of PS films,and XRD spectra suggest the formation of oxide layer after post-treating in H 2O 2.展开更多
The influences of exogenous H 2O 2 and salicylic acid (SA) treatments on the alternative respiratory pathway (ARP) in aged potato (Solanum tuberosum L.) tuber slices were compared. The results showed that both H 2O...The influences of exogenous H 2O 2 and salicylic acid (SA) treatments on the alternative respiratory pathway (ARP) in aged potato (Solanum tuberosum L.) tuber slices were compared. The results showed that both H 2O 2(5.0 mmol/L) and SA (0.1 mmol/L) treatments had a significant inducing effect on ARP capacity (V alt ) and its ratio to total respiration (V alt /V t) in potato slices aged for 24 h. With a monoclonal antibody against the alternative oxidase (AOX), Western blotting results showed that both H 2O 2 and SA treatments increased the AOX expression levels in aged potato tuber slices. However, the results of oxygen isotope discrimination experiments showed that H 2O 2 had no influence on the in vivo ARP activity (ρV alt ) and its contribution to V t(expressed as ρV alt /V t) in potato slices aged for 24 h, but SA had a significant influence on the ρV alt and ρV alt /V t values of the aged potato tuber slices. These results indicate that there are differences between the effects of H 2O 2 and SA on ARP in plant tissues. Both of them possess the ability to induce ARP capacity through inducing AOX expression. However, SA can simultaneously stimulate the operation of ARP, but H 2O 2 can not.展开更多
基金Project(2182040)supported by the Beijing Natural Science Foundation,ChinaProjects(51674026,51974025,U1802253)supported by the National Natural Science Foundation of ChinaProject(FRF-TT-19-001)supported by the Fundamental Research Funds for the Central Universities,China。
文摘An innovative technology,nitric acid pressure leaching of limonitic laterite ores,was proposed by our research team.The HNO3 regeneration is considerable significance for the improvement of the proposed technology and its commercial application,but it has not been systematically investigated.Herein,regenerating HNO3 from Ca(NO3)2 solution with low-cost H2SO4,and simultaneous synthesis of fibrous CaSO4·2H2O by-products were studied.As a theoretical basis,the solubility of CaSO4·2H2O in HNO3 medium is studied.It is concluded that the solubility of CaSO4·2H2O increases with increasing temperature or increasing HNO3 concentration,which has considerable guiding significance for the subsequent experimental research and analysis.Then,the effects of various factors on the residual Ca^2+ concentration of filtrate,the regenerated HNO3 concentration and the morphology of synthesized products are investigated using ICP-AES and SEM.And the effect mechanism is also analyzed.The results indicate the regenerated HNO3 concentration reaches 116 g/L with the residual Ca^2+ concentration being 9.7 g/L at the optimum conditions.Moreover,fibrous CaSO4·2H2O by-products with high aspect ratios(length,406.32μm;diameter,14.71μm;aspect ratio,27.62)can be simultaneously synthesized.
基金supported by the National Natural Science Foundation of China(nos.21103182,21273049)the Natural Science Foundation of Guangdong Province(no.S2013050014127)Education Department Funding of Guangdong Province(nos.CGZHZD1104,2013CXZDA016).
文摘Three different regeneration processes including hydrogen or nitrogen purging and coke-burning treatment were used to restore the Pt-Sn/γ-AlOcatalysts, through which propane dehydrogenation reaction was performed in a consecutive reaction-regeneration mode. It was found that the catalyst using hydrogen regeneration showed the best stability compared with those regenerated by nitrogen purging and coke-burning treatment, suggesting that hydrogen regeneration is an effective approach for maintaining the performance of Pt-Sn/γ-AlOcatalysts in propane dehydrogenation reaction. The effect of different regeneration atmospheres on the metal active center and the coke deposition was investigated by XRD,TEM, N-physisorption, TPO, TG and Raman technologies, and the results revealed that hydrogen or nitrogen regeneration resulted in little impact on the size and structure of metal active center, retaining the effective Pt Sn phase over the catalyst. Moreover, hydrogen regeneration not only removed the low dense components of the coke, but also altered the property of the residual coke through hydrogenation, leading to a higher mobility of coke, and thus a higher accessibility of the metal active centers. Whereas nitrogen regeneration only removed the low dense components of the coke. Although coke-burning regeneration caused a thorough coke removal, the catalyst subjected to repeated redox exhibited poor stability due to metal agglomeration, phase segregation and the resulting large PtSn particle and core-shell structure with a Sn-rich surface.
基金support for this work by the research facilities of Ilam University
文摘A wide variety of aldoximes and ketoximes were regenerated to corresponding carbonyl compounds with Al(NO3)3·9H2O in presence of catalytic amounts of NaBr in CH2Cl2 at room temperature.
文摘Electrocatalytic reduction of CO_(2)(CO_(2)RR)to multicarbon products is an efficient approach for ad-dressing the energy crisis and achieving carbon neutrality.In H-cells,achieving high-current C_(2)products is challenging because of the inefficient mass transfer of the catalyst and the presence of the hydrogen evolution reaction(HER).In this study,dendritic Cu/Cu_(2)O with abundant Cu^(0)/Cu^(+)interfaces and numerous dendritic curves was synthesized in a CO_(2)atmosphere,resulting in the high selectivity and current density of the C_(2)products.Dendritic Cu/Cu_(2)O achieved a C_(2)Faradaic efficiency of 69.8%and a C_(2)partial current density of 129.5 mA cm^(-2)in an H-cell.Finite element simulations showed that a dendritic structure with a high curvature generates a strong electric field,leading to a localized CO_(2)concentration.Additionally,DRT analysis showed that a dendritic struc-ture with a high curvature actively adsorbed the surrounding high concentration of CO_(2),enhancing the mass transfer rate and achieving a high current density.During the experiment,the impact of the electronic structure on the performance of the catalyst was investigated by varying the atomic ratio of Cu^(0)/Cu^(+) on the catalyst surface,which resulted in improved ethylene selectivity.Under the optimal atomic ratio of Cu^(0)/Cu^(+),the charge transfer resistance was minimized,and the desorption rate of the intermediates was low,favoring C_(2) generation.Density functional theory calculations indicated that the Cu^(0)/Cu^(+) interfaces exhibited a lower Gibbs free energy for the rate-determining step,enhancing C_(2)H_(4) formation.The Cu/Cu_(2)O catalyst also exhibited a low Cu d-band center,which enhanced the adsorption stability of *CO on the surface and facilitated C_(2)formation.This observa-tion explained the higher yield of C_(2) products at the Cu^(0)/Cu^(+) interface than that of H_(2) under rapid mass transfer.The results of the net present value model showed that the H-cell holds promising industrial prospects,contingent upon it being a catalyst with both high selectivity and high current density.This approach of integrating the structure and composition provides new insights for ad-vancing the CO_(2)RR towards high-current C_(2) products.
基金financially supported by the National Natural Science Commission-Yunnan Joint Fund Project (No.U1402274)
文摘Aluminum recovery is a key issue for the overall recycling of valuable metals from spent catalysts. This paper focuses on the recovery and regeneration of alumina with high additional value from the spent hydrodesulfurization catalyst CoMo/Al_2O_3. The results indicate that 98.13% alumina is successfully leached from the treated spent catalysts by an alkaline leaching process under the conditions of 5 mol·L^(-1) sodium hydroxide,a liquid/solid ratio of 20 ml·g^(-1),a temperature of 160 0 C and a reaction time of 4 h. In the leaching residue, no difficult leaching compound is found and cobalt and nickel are enriched,both of which are conducive to the subsequent metal recovery step. The reaction order of aluminum leaching is 0.99. This reaction fits well with the interfacial chemical reaction model, and its apparent activation energy is calculated as 45.50 kJ mol^(-1). Subsequently, y-Al_2O_3 with a high specific surface area of 278.3 m^2·g^(-1), a mean size of 2.2 μm and an average pore size of 3.10 nm is then regenerated from the lixivium, indicating its suitability for use as a catalyst carrier. The recovery and regeneration of alumina from spent catalysts can not only significantly contribute to the total recycling of such hazardous spent catalysts but also provide a new approach for the preparation of y-Al_2O_3 with a high specific surface area using spent catalysts as the aluminum sources.
基金supported by the National Natural Science Foundation of China (No. 50908062)the State Key Lab of Urban Water Resource and Environment (No. HIT-QAK200808)the Heilongjiang Natural Science Foundation (No. E2007-04), China
文摘To improve the working and living environment of submarine crews, an integrated system of CO2 removal and O2 regeneration was designed to work under experimental conditions for 50 people in a submarine cabin during prolonged voyages. The integrated system comprises a solid amine water desorption (SAWD) unit for CO2 collection and concentration, a Sabatier reactor for CO2 reduction and a solid polymer electrolyte (SPE) unit for O2 regeneration by electrolysis. The performances of the SAWD-Sabatier-SPE integrated system were investigated. The experimental results from the SAWD unit showed that the average CO2 concentration in the CO2 storage tank was more than 96% and the outlet CO2 concentration was nearly zero in the first 45 min, and less than 1/10 of inlet CO2 after 60 min when input CO2 was 0.5% (1000 L). About 950 L of CO2 was recovered with a recovery rate of 92%-97%. The output CO2 concentration was less than 0.2%, which showed that the adsorption-desorption performance of this unit was excellent. In the CO2 reduction unit we investigated mainly the start-up and reaction performance of the Sabatier reactor. The start-up time of the Sabatier reactor was 6, 8 and 10 rain when the start-up temperature was 187.3, 179.5 and 168 ℃, respectively. The product water was colorless, transparent, and had a pH of 6.9-7.5, and an electrical conductivity of 80μs/cm. The sum of the concentration of metal ions (Ru^3+, Al^3+, Pb^2+) was 0.028% and that of nonmetal ions (Cl^-, SO4^2-) was 0.05%. In the O2 regeneration unit, the O2 generation rate was 0.48 m^3/d and the quantity was 2400 L, sufficient to meet the submariners' basic oxygen demands. These results may be useful as a basis for establishing CO2-1evel limits and O2 regeneration systems in submarines or similar enclosed compartments during prolonged voyages.
基金Project supported by National Natural Science Foundation of China (51072096)National Program on Key Basic Research Project (973 program)(2010CB732304)
文摘MnOx-CeO2-Al2O3 mixed oxides were prepared by impregnating manganese and cerium precursors on alumina powders via a sol- gel deposition method. The oxide catalyst exhibited a poor resistance to sulfur dioxide after the treatment in 100 ppm SO2/air at 350 °C for 50 h. The formation of manganese sulfate and especially cerium sulfate reduced the availability of surface active metal oxides, blocked the pore structure and decreased the surface area of the catalyst. These changes in chemical and structural and textural properties resulted in a severe loss in the activities of the sulfated catalyst for NO and soot oxidation. The decomposition of sulfates was almost complete during the calcina-tion in air at 800 °C for 30 min, which partially recovered the surface active sites and the catalyst surface area despite the significant sintering of metal oxides. Consequently, the NOx-assisted soot oxidation activity of the catalyst was regenerated to some extent by the oxidation treatment.
文摘The relationship between hydrogen peroxide (H 2O 2) and endopeptidase(EP) in wheat ( Triticum aestivum L. cv. Yanmai 158) leaves was studied during natural and artificial aging. Rapid accumulation of endogenous H 2O 2 and marked increase of EP activity were observed during the later phase of aging. A new EP isozyme with higher activity was detected by electrophoresis on polyacrylamide gels containing denatured heamoglobin. With the increase of exogenous H 2O 2, the activity of EP increased at first and then decreased.
文摘The possible physiological mechanism of enhancement of cold tolerance by salicylic acid (SA) in banana seedlings ( Musa acuminata cv. Williams 8188) was explored. Measurements of leakage electrolyte after 2 d of recovery at 30/22 ℃ (day/night) following 3 d of cold stress at 7 ℃ showed that pretreatment with hydroponic solution containing SA 0.3-0.9 mmol/L as foliar spray under normal growth conditions (30/22 ℃) could significantly enhance cold tolerance of banana plants. The highest enhancing effect of SA occurred at 0.5 mmol/L and it showed the lowest leakage rate of electrolyte or smaller leaf wilting area after 2 d of recovery at normal temperature from 3 d of 7 ℃ or 5 ℃ cold stress. Higher concentrations (≥2.5 mmol/L) of SA, however, caused more electrolyte leakage, indicating that they aggravated chilling damage. Enhanced cold tolerance by SA could be related to H 2O 2 metabolism. Compared with water_treated seedlings (control), SA 0.5 mmol/L treatment inhibited activities of catalase (CAT) and ascorbate peroxidase (APX), increased peroxidase (POX) activity, but did not affect the activity of superoxide dismutase (SOD) under normal growth conditions, and these changes might lead to an accumulation of H 2O 2, whereas SA pretreatment enhanced the activities of CAT and APX, and reduced the increase in productions of H 2O 2 and thiobarbituric acid_reaction substances (TBARS) during subsequent 7 ℃ cold stress and recovery periods. Exogenous H 2O 2 treatments (1.5 -2.5 mmol/L) also increased cold tolerance of banana seedlings. Furthermore, pretreatment of banana seedlings with dimethylthiourea (a trap for H 2O 2) significantly inhibited cold tolerance induced by SA. These results suggested that endogenous H 2O 2 may be required for SA_enhanced cold tolerance. The significance of the interaction of SA, H 2O 2 and H 2O 2_metabolizing enzymes during cold stress has been discussed.
基金financially supported by the Scientific and Technological Project of Shaanxi Province of China,No.2016SF-010
文摘Rho kinase (ROCK) was the first downstream Rho effector found to mediate RhoA-induced actin cytoskeletal changes through effects on myosin light chain phosphorylation. There is abundant evidence that the ROCK pathway participates in the pathogenesis of retinal endothelial injury and proliferative epiretinal membrane traction. In this study, we investigated the effect of the ROCK pathway inhibitor Y-27632 on retinal Müller cells subjected to hypoxia or oxidative stress. Müller cells were subjected to hypoxia or oxidative stress by exposure to CoCl2 or H2O2. After a 24-hour treatment with Y-27632, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was used to assess the survival of Müller cells. Hoechst 33258 was used to detect apoptosis, while 2′,7′-dichlorodihydrofluorescein diacetate was used to measure reactive oxygen species generation. A transwell chamber system was used to examine the migration ability of Müller cells. Western blot assay was used to detect the expression levels of α-smooth muscle actin, glutamine synthetase and vimentin. After treatment with Y-27632, Müller cells subjected to hypoxia or oxidative stress exhibited a morphology similar to control cells. Y-27632 reduced apoptosis, α-smooth muscle actin expression and reactive oxygen species generation under oxidative stress, and it reduced cell migration under hypoxia. Y-27632 also upregulated glutamine synthetase expression under hypoxia but did not impact vimentin expression. These findings suggest that Y-27632 protects Müller cells against cellular injury caused by oxidative stress and hypoxia by inhibiting the ROCK pathway.
文摘The solution of H 2O 2 is proposed to post-treat thick porous silicon (PS) films.The prepared PS film as the cathode is applied about 10mA/cm 2 current in mixture of ethanol,HF,and H 2O 2 solutions,which is expected to improve the stability and the smoothness of the surface and the mechanical property of the thick porous silicon films.The microstructure of the PS thick films with thicknesse of 20μm and 70μm has been studied.The SEM images show significant improved smoothness on surface of PS films,and XRD spectra suggest the formation of oxide layer after post-treating in H 2O 2.
文摘The influences of exogenous H 2O 2 and salicylic acid (SA) treatments on the alternative respiratory pathway (ARP) in aged potato (Solanum tuberosum L.) tuber slices were compared. The results showed that both H 2O 2(5.0 mmol/L) and SA (0.1 mmol/L) treatments had a significant inducing effect on ARP capacity (V alt ) and its ratio to total respiration (V alt /V t) in potato slices aged for 24 h. With a monoclonal antibody against the alternative oxidase (AOX), Western blotting results showed that both H 2O 2 and SA treatments increased the AOX expression levels in aged potato tuber slices. However, the results of oxygen isotope discrimination experiments showed that H 2O 2 had no influence on the in vivo ARP activity (ρV alt ) and its contribution to V t(expressed as ρV alt /V t) in potato slices aged for 24 h, but SA had a significant influence on the ρV alt and ρV alt /V t values of the aged potato tuber slices. These results indicate that there are differences between the effects of H 2O 2 and SA on ARP in plant tissues. Both of them possess the ability to induce ARP capacity through inducing AOX expression. However, SA can simultaneously stimulate the operation of ARP, but H 2O 2 can not.