期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Self-assembled α-MnO2 urchin-like microspheres as a high-performance cathode for aqueous Zn-ion batteries 被引量:7
1
作者 Yunzhao Wu Ye Tao +7 位作者 Xianfu Zhang Kai Zhang Shengbin Chen Yu Liu Yong Ding Molang Cai Xuepeng Liu Songyuan Dai 《Science China Materials》 SCIE EI CSCD 2020年第7期1196-1204,共9页
Aqueous Zn-ion batteries(AZIBs)are one of the promising battery technologies for the green energy storage and electric vehicles.As one attractive cathode material for AZIBs,α-MnO2 materials exhibit superior electroch... Aqueous Zn-ion batteries(AZIBs)are one of the promising battery technologies for the green energy storage and electric vehicles.As one attractive cathode material for AZIBs,α-MnO2 materials exhibit superior electrochemical properties.However,their long-term reversibility is still in great suspense.Considering the decisive effect of the structure and morphology on theα-MnO2 materials,hierarchicalα-MnO2 materials would be promising to improve the cycle performance of AZIB.Here,we synthesized theα-MnO2 urchin-like microspheres(AUM)via a self-assembled method.The porous microspheres composed of one-dimensionalα-MnO2 nanofibers with high crystallinity,which improved the surface area and active sites for Zn2+intercalation.The AUM-based AZIB realized a high initial capacity of 308.0 mA hg-1,and the highest energy density was 396.7 W hkg-1.The kinetics investigation confirmed the high capacitive contribution and fast ion diffusion of the AUM.Ex-situ XRD measurement further verified the synergistic insertion/extraction of H+and Zn2+ions during the charge/discharge process.The superiority of the AUM guaranteed good electrochemical performance and reversible phase evolution,and this application would promote the follow-up research on the advanced AZIB. 展开更多
关键词 aqueous Zn-ion batteries α-MnO2 urchin-like microspheres fast ion diffusion coefficients reversible phase evolution synergistic h+-zn2+insertion/extraction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部