期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Solar chemical looping reforming of methane combined with isothermal H2O/CO2 splitting using ceria oxygen carrier for syngas production 被引量:2
1
作者 Srirat Chuayboon Stéphane Abanades Sylvain Rodat 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第2期60-72,共13页
The chemical looping reforming of methane through the nonstoichiometric ceria redox cycle(CeO2/CeO2-δ) has been experimentally investigated in a directly irradiated solar reactor to convert both solar energy and meth... The chemical looping reforming of methane through the nonstoichiometric ceria redox cycle(CeO2/CeO2-δ) has been experimentally investigated in a directly irradiated solar reactor to convert both solar energy and methane to syngas in the temperature range 900–1050 °C. Experiments were carried out with different ceria shapes via two-step redox cycling composed of endothermic partial reduction of ceria with methane and complete exothermic re-oxidation of reduced ceria with H2 O/CO2 at the same operating temperature, thereby demonstrating the capability to operate the cycle isothermally. A parametric study considering different ceria macrostructure variants(ceria packed powder, ceria packed powder mixed with inert Al2 O3 particles, and ceria reticulated porous foam) and operating parameters(methane flow-rate, reduction temperature, or sintering temperature) was conducted in order to unravel their impact on the bed-averaged oxygen non-stoichiometry(δ), syngas yield, methane conversion, and solar reactor performance. The ceria cycling stability was also experimentally investigated to demonstrate repeatable syngas production by alternating the flow between CH4 and H2 O(or CO2). A decrease in sintering temperature of the ceria foam was beneficial for increasing syngas selectivity, methane conversion,and reactor performance. Increasing both CH4 concentration and reduction temperature enhanced δ with the maximum value up to 0.41 but concomitantly favored CH4 cracking reaction. The ceria reticulated porous foam showed better performance in terms of effective heat transfer, due to volumetric absorption of concentrated solar radiation and uniform heating with lower solar power consumption, thereby promoting the solar-to-fuel energy conversion efficiency that reached up to 5.60%. The energy upgrade factor achieved during cycle was up to 1.19. Stable patterns in the δ and syngas yield for consecutive cycles with the ceria foam validated material performance stability. 展开更多
关键词 Chemical LOOPING METhANE REFORMING CERIA structure Concentrated SOLAR power syngas production h2O/CO2 SPLITTING
下载PDF
H_2O/CO_2 co-electrolysis in solid oxide electrolysis cells 被引量:4
2
作者 Han Minfang Fan Hui Peng Suping 《Engineering Sciences》 EI 2014年第1期43-50,共8页
A solid oxide electrolysis cell(SOEC) is an environmental-friendly device which can convert electric energy into chemical energy with high efficiency. In this paper,the progress on structure and operational principle ... A solid oxide electrolysis cell(SOEC) is an environmental-friendly device which can convert electric energy into chemical energy with high efficiency. In this paper,the progress on structure and operational principle of an SOEC for co-electrolyzing H2O and CO2to generate syngas was reviewed. The recent development of high temperature H2O/CO2co-electrolysis from solid oxide single electrolysis cell was introduced. Also investigated was H2O/CO2co-electrolysis research using hydrogen electrode-supported nickel(Ni)-yttria-stabilized zirconia(YSZ)/YSZ/Sr-doped LaMnO3(LSM)-YSZ cells in our group. With 50 % H2O,15.6 % H2and 34.4 % CO2inlet gas to Ni- YSZ electrode,polarization curves(I- U curves) and electrochemical impedance spectra(EIS) were measured at 800 ℃ and 900 ℃. Long-term durability of electrolysis was carried out with the same inlet gas at 900 ℃ and 0.2 A/cm2. In addition,the improvement of structure and development of novel materials for increasing the electrolysis efficiency of SOECs were put forward as well. 展开更多
关键词 SOEC h2O/CO2 co-electrolysis syngas electrolysis efficiency h2O electrolysis
下载PDF
Utilization of fruit waste for H_(2)-rich syngas production via steam co-gasification with brown coal
3
作者 Aisikaer Anniwaer Nichaboon Chaihad +7 位作者 Aghietyas Choirun Az Zahra Irwan Kurnia Yutaka Kasai Suwadee Kongparakul Chanatip Samart Katsuki Kusakabe Abuliti Abudula Guoqing Guan 《Carbon Resources Conversion》 EI 2023年第4期315-325,共11页
In this work,to efficiently utilize waste fruit and low-rank coal for the hydrogen(H_(2))-rich syngas production,steam co-gasification of banana peel(BP)and brown coal(BC)was studied in a fixed-bed reactor.The results... In this work,to efficiently utilize waste fruit and low-rank coal for the hydrogen(H_(2))-rich syngas production,steam co-gasification of banana peel(BP)and brown coal(BC)was studied in a fixed-bed reactor.The results showed that the gasification rate of BC was highly enhanced after mixing it with BP and the obvious synergistic effect was observed in all investigated three mixing weight ratios(i.e.,1:1,1:4,4:1),resulting in a higher carbon conversion as well as a H_(2)-rich gas production yield for the co-gasification.However,the extent of promotion by synergistic effect was affected by the reaction temperature,mixing ratio,and steam amount.It was found that the high potassium(K)species content in the BP provided the catalytic effect not only on water-gas shift reaction but also on tar reforming/cracking,thereby enhancing the gasification of BC.In addition,it is confirmed that steam should be an important factor to promote the synergistic effect and H_(2)-rich gas production. 展开更多
关键词 Steam co-gasification Waste banana peel Brown coal h2-rich syngas Synergistic effect
原文传递
钴对高硫合成气制甲硫醇负载型钼酸钾催化剂的促进作用 被引量:3
4
作者 王琪 杨意泉 +2 位作者 袁友珠 刘澍 张鸿斌 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第1期64-68,共5页
在不同载体的K2MoO4催化剂上高硫化氢合成气合成甲硫醇活性大小顺序为:SiO2>AC>CNTs>Al2O3;3种氧化物助剂对K2MoO4/SiO2催化剂的活性促进作用的大小顺序为:CoO>NiO2>Fe2O3;m(K2MoO4)∶m(CoO)∶m(SiO2)=5∶1∶20,催化剂... 在不同载体的K2MoO4催化剂上高硫化氢合成气合成甲硫醇活性大小顺序为:SiO2>AC>CNTs>Al2O3;3种氧化物助剂对K2MoO4/SiO2催化剂的活性促进作用的大小顺序为:CoO>NiO2>Fe2O3;m(K2MoO4)∶m(CoO)∶m(SiO2)=5∶1∶20,催化剂生成甲硫醇得率为0.76g·h-1·g-1cat,比m(K2MoO4)∶m(SiO2)=1∶20催化剂高约1 5倍,两种催化剂的表观活化能分别为53.6kJ·mol-1和83.5kJ·mol-1.从ESR表征可观测到氧包围的"oxo Mo(V)"(g=1.93)和硫包围的"thio Mo(V)"(g=1.98)共振信号.在钼基催化剂中添加CoO后,"oxo Mo(V)"含量减少,而"thio Mo(V)"含量增加.钴的加入削弱了Mo O Si的相互作用,使Mo6+和"oxo Mo(V)"易被硫化还原为MoS2. 展开更多
关键词 促进作用 K2MoO4/CoO/SiO2催化剂 甲硫醇 高硫合成气 负载型钼酸钾催化剂 一步法
下载PDF
Multi-walled carbon nanotubes as novel promoter of catalysts for certain hydrogenation and dehydrogenation reactions 被引量:2
5
作者 Guodong Lin Xuelian Liang +3 位作者 Zhiming Liu Jianrong Xie Binghui Chen Hongbin Zhang 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第1期47-59,共13页
From the chemical catalysis viewpoint,the excellent performance of CNTs in adsorption-activation of H2 and in promoting spillover of adsorbed H-species is very attractive,in addition to their nanosize channels,sp2-C c... From the chemical catalysis viewpoint,the excellent performance of CNTs in adsorption-activation of H2 and in promoting spillover of adsorbed H-species is very attractive,in addition to their nanosize channels,sp2-C constructed surfaces,and high thermal/electrical conductivity.This review examines some recent progresses of CNTs as a novel support or promoter of catalysts for certain hydrogenation or dehydrogenation reactions,e.g.,hydrogenation-conversion of syngas to yield alcohols and decomposition or steam-reforming of methanol to generate H2,mainly based on recent work carried out in our laboratory. 展开更多
关键词 multi-walled carbon nanotubes catalysts supported or promoted by CNTs hydrogenation-conversion of syngas toalcohols decomposition or steam-reforming of methanol to yield h2
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部