Geologic, petrographic and petrochemical studies of the late Mesozoic K-rich melanocratic dykes, including lamprophyres, andesite porphyrites and dacite-porphyry in the gold field system in the Jiaodong Peninsula, Chi...Geologic, petrographic and petrochemical studies of the late Mesozoic K-rich melanocratic dykes, including lamprophyres, andesite porphyrites and dacite-porphyry in the gold field system in the Jiaodong Peninsula, China, have shown that these dykes are characterized by rich potassium and alkali but poor titanium. They belong to an ultra-high potassic, shoshonitic and high potassic calc-alkaline rock series. The parental magma has relatively high initial strontium ratios ((87Sr/86Sr),=0.70895-0.71140) and low (143Nd/144Nd)1 ratios (varying from 0.51135 to 0.51231); and its δ18Osmow, whole rock values vary from +5.8%c to +10.6%c with a mean of +7.1%c. These features suggest that the source region of the magma is an enriched mantle wedge transformed from a continental lithosphere mantle which has experienced metasomatism by mantle-derived fluids with H2O-dominated fluids that were provided during the underthrusting of an ocean crust. The initial magma was generated by low-degree partial melting of the enriched mantle in its mature stage in the back-arc spreading environment. The evolution of magmas is associated with two trends, i.e., fractional crystallization and mixing with or intensive contamination by palaeo-crust materials or metamorphic rocks. The former process is evident in the gold field system of quartz-vein type, whereas the latter is dominated in the gold field system of the altered-rock type. This conclusion is very important for more detailed study of petrogenesis and mineralization through the crust-mantle interaction (exchange) in the Mesozoic in this region.展开更多
The Huoshenmiao δeposit is Mo skarn δeposit, located in the western part of the Luanchuan ore δistrict.Mineralization process can be δivided into a skarn and a quartz-sulfide episodes with six stages: prograde(I),...The Huoshenmiao δeposit is Mo skarn δeposit, located in the western part of the Luanchuan ore δistrict.Mineralization process can be δivided into a skarn and a quartz-sulfide episodes with six stages: prograde(I), retrograde(II), quartz-K-feldspar(III), quartz-molybdenite(IV), quartz-pyrite(V), and quartzcalcite(VI). A combined study of geochronology, fluid inclusion(FI), and stable isotopes was conducted to constrain the mineralization age, source of ore materials, as well as the origin and evolution of the ore-forming fluids. Molybdenite Ree Os δating indicates that the δeposit was formed in the Late Jurassic(~145 Ma). The δ^(34)S values of sulfides range from 3.0‰ to 7.1‰, implying that the ore materials in the δeposit are magmatic in origin. Three types and six subtypes of FIs are δistinguished, namely, aqueous two-phase(W_1-and W_2-type), δaughter mineral-bearing multiphase(S_1-and S_2-type), and CO_2-bearing three-phase(C_1-and C_2-type). In stages I and II, the W_1-type FIs δisplay homogenization temperatures(Th) from 496°C to >600°C, with salinities of 14.9-18.3 wt.% NaCl eqv. The FIs in stages III, IV and early stage V composed of coeval S-, C-and W-types, respectively homogenize at similar Th, suggesting the occurrence of boiling. The W1-type FIs in late stage V and stage VI, yield Th of 102-406°C and salinities of 0-4.7 wt.% NaCl eqv. The δD_(H_2O)and δ^(18) O(H_2O)values of the ore-forming fluids in quartz-sulfide episode vary from-112‰ to-76‰, and 11.0‰ to 1.0‰, respectively. All these above observations reveal that the early ore-forming fluids are magmatic in origin, and characterized by high temperature and moderate to high salinity, and gradually evolve to low temperature, low salinity meteoric water. The Huoshenmiao Mo δeposit is associated with the magmatism event induced by the protracted subduction of the Izanagi plate beneath the eastern China continent. The δecrease in temperature, salinity and f(O_2), as well as change of p H δue to boiling and fluid-rock interaction, are the main factors controlling Mo δeposition.展开更多
Epithermal gold deposits are typical precious metal deposits related to volcanic and subvolcanic magmatism.Due to the lack of direct geological and petrographic evidences,the origin of the ore-forming fluid is deduced...Epithermal gold deposits are typical precious metal deposits related to volcanic and subvolcanic magmatism.Due to the lack of direct geological and petrographic evidences,the origin of the ore-forming fluid is deduced from the spatial diagenesis-mineralization relationship,chronological data,physicochemical characteristics of mineral fluid inclusions,mineral or rock elements and isotopic geochemical characteristics.By objectively examining this scientific problem via a geological field survey and petrographic analysis of the Gaosongshan epithermal gold deposit,we recently discovered and verified the following points:(1) Pyrite-bearing spherical quartz aggregates (PSQA) occur in the rhyolitic porphyry;(2) the mineralization is structurally dominated by WNW- and ENE-trending systems and occurs mostly in hydrothermal breccias and pyrite-quartz veins,and the ore types are mainly hematite-crusted quartz,hydrothermal breccia,massive pyrite-quartz,etc.;(3) the alteration types consist of prevalent silicification,sericitization,propylitization and carbonation,with local adularization and illitization.The ore minerals are mainly pyrite,primary hematite,native gold,and electrum,with lesser amounts of chalcopyrite,magnetite,sphalerite,and galena,indicating a characteristic epithermal low-sulfidation deposit.The ore-forming fluid may have been primarily derived from magmatic fluid exsolved from a crystallizing rhyolitic porphyry magma.Further zircon U-Pb geochronology,fluid inclusion,physicochemical and isotopic geochemical analyses revealed that (1) rhyolitic porphyry magmatism occurred at 104.6 ± 1.0 Ma,whereas the crystallization of the PSQA occurred at 100.8 ± 2.1 Ma;(2) the hydrothermal fluid of the pre-ore stage was an exsolved CO2-bearing H2O-NaCl magmatic fluid that produced inclusions mainly composed of pure vapor (PV),vapor-rich (WV) and liquid-rich (WL) inclusions with a small number of melt-(M) and solid-bearing (S) inclusions;mineralization-stage quartz contains WL and rare PV,WV and pure liquid (PL) inclusions characterized by the H2O-NaCl system with low formation temperatures and low salinities;(3) the characteristics of hydrogen,oxygen,sulfur,and lead isotopes and those of rare earth elements (REEs) provide insight into the affinity between PSQA and orebodies resulting from juvenile crust or enriched mantle.Combined with previous research on the mineralogenetic epoch (99.32 ± 0.01 Ma),we further confirm that the mineralization of the deposit occurred in the late Early Cretaceous,which coincides with the extension of the continental margin induced by subduction of the Pacific Plate beneath the Eurasian Plate.The formation of the ore deposit was proceeded by a series of magmatic and hydrothermal events,including melting of enriched juvenile crust,upwelling,the eruption and emplacement of the rhyolitic magma,the exsolution and accumulation of magmatic hydrothermal fluid,decompression,the cooling and immiscibility/boiling of the fluid,and mixing of the magmatic fluid with meteoric water,in association with water-rock interaction.展开更多
The nickel‐based complex Ni‐CH3CH2NH2‐intercalated niobate layered perovskite Ni‐CH3CH2NH2/H1.78Sr0.78Bi0.22Nb2O7was synthesized via a facile in situ chemical reaction method.Using ultrathin H1.78Sr0.78Bi0.22Nb2O7...The nickel‐based complex Ni‐CH3CH2NH2‐intercalated niobate layered perovskite Ni‐CH3CH2NH2/H1.78Sr0.78Bi0.22Nb2O7was synthesized via a facile in situ chemical reaction method.Using ultrathin H1.78Sr0.78Bi0.22Nb2O7nanosheets and nickel acetate as precursors.The composition,structure,photophysical properties,and photocatalytic activity for H2production of Ni‐CH3CH2NH2/H1.78Sr0.78Bi0.22Nb2O7were studied systematically.The photocatalyst loaded with0.5wt%Ni exhibited the highest H2evolution rate of372.67μmo/h.This was0.54times higher than the activity of the H1.78Sr0.78Bi0.22Nb2O7nanosheets.The activity of the optimized Ni‐CH3CH2NH2/H1.78Sr0.78Bi0.22Nb2O7was comparable to that of the Pt‐loaded sample under the same reaction conditions.The photocatalytic activity of the Ni‐CH3CH2NH2/H1.78Sr0.78Bi0.22Nb2O7was mainly attributed to the excellent separation of photogenerated carriers,after formation of the intercalated complex Ni‐CH3CH2NH2.This study provides a facile strategy to synthesize a non‐precious metal‐loaded photocatalyst for H2production.展开更多
Nd, Sr and O isotopic study on the spilite-keratophyre sequence in Xiqiu shows that its ∈_(Nd) values are inthe range of 4.02-5.26, and its ∈_(Sr) values, +1.4-2.6. According to the points of these data in the ∈_(N...Nd, Sr and O isotopic study on the spilite-keratophyre sequence in Xiqiu shows that its ∈_(Nd) values are inthe range of 4.02-5.26, and its ∈_(Sr) values, +1.4-2.6. According to the points of these data in the ∈_(Nd)-T,∈_(Sr)-T and ∈_(Nd)-∈_(Sr) diagrams, the spilite-keratophyre is interpreted as being slightly contaminated by crustalmaterials. Its δ^(18)O values are 3.9-5.0‰. The depletion of ^(18)O in the rocks resulted from the influence ofseawater hydrothermal alteration during or soon after the rock formation. Based on the isotopic characteristicsand available geochemical data, it is believed that the spilite-keratophyre was formed in the well-developedisland-arc environment during the Late Proterozoic subduction of the palaeo-Pacific plate beneath thesoutheastern margin of the Yangtze massif.展开更多
The Jiajika granitic-and pegmatite-type lithium deposit,which is in the Songpan-Garze Orogenic Belt in western Sichuan Province,China,is the largest in Asia.Previous studies have examined the geochemistry and mineralo...The Jiajika granitic-and pegmatite-type lithium deposit,which is in the Songpan-Garze Orogenic Belt in western Sichuan Province,China,is the largest in Asia.Previous studies have examined the geochemistry and mineralogy of pegmatites and their parental source rocks to determine the genesis of the deposit.However,the evolution of magmatic-hydrothermal fluids has received limited attention.We analyzed He–Ar–H–O isotopes to decipher the ore-fluid nature and identify the contribution of fluids to mineralization in the late stage of crystallization differentiation.In the Jiajika ore field,two-mica granites,pegmatites(including common pegmatites and spodumene pegmatites),metasandstones,and schists are the dominant rock types exposed.Common pegmatites derived from early differentiation of the two-mica granitic magmas before they evolved into spodumene pegmatites during the late stage of the magmatic evolution.Common pegmatites have~3He/~4He ratios that vary from 0.18 to 4.68 Ra(mean1.62 Ra),and their~(40)Ar/~(36)Ar ratios range from 426.70 to 1408.06(mean 761.81);spodumene pegmatites have~3He/~4He ratios that vary from 0.18 to 2.66 Ra(mean 0.87Ra)and their~(40)Ar/~(36)Ar ratios range from 402.13 to 1907.34(mean 801.65).These data indicate that the hydrothermal fluids were shown a mixture of crust-and mantle-derived materials,and the proportion of crustderived materials in spodumene pegmatites increases significantly in the late stage of the magmatic evolution.Theδ~(18)OH_(2)O–VSMOWvalues of common pegmatites range from 6.2‰to 10.9‰,with a mean value of 8.6‰,andδDV–SMOWvalues vary from-110‰to-72‰,with a mean o f-85‰.Theδ~(18)OH_(2)O–VSMOWvalues of spodumene pegmatites range from 5.3‰to 13.2‰,with a mean of 9.1‰,andδDV–SMOWvalues vary from-115‰to-77‰,with a mean of-91‰.These data suggest that the ore-forming fluids came from primary magmatic water gradually mixing with more meteoric water in the late stage of the magmatic evolution.Based on the He–Ar–H–O and other existing data,we propose that the oreforming metals are mainly derived from the upper continental crust with a minor contribution from the mantle,and the fluid exsolution and addition of meteoric water during the formation of pegmatite contributed to the formation of the Jiajika superlarge lithium deposit.展开更多
The Laojiezi alkaline volcanic rocks, which are located in the intraplate region of the Yangtze craton, coincide with the formation of the Jinshajiang-Ailaoshan-Red River alkaline rock belt. Although this belt has bee...The Laojiezi alkaline volcanic rocks, which are located in the intraplate region of the Yangtze craton, coincide with the formation of the Jinshajiang-Ailaoshan-Red River alkaline rock belt. Although this belt has been widely studied by geologists because of its porphyry-related Pb-Ag-Au polymetallic deposit and geotectonic location, the material sources of this belt are still debate. Whole-rock analyses show that these rocks have high total alkali contents(3.73–11.08 wt%), and their aluminum saturation index(ASI) values widely vary from 0.82 to 3.07, which comprise a metaluminous-peraluminous magma series. These rocks are characterized by high K(K2 O/Na2 O>1) and low Ti and Mg contents; enrichment in large-ion lithophile elements, such as Rb, Ba, K and light rare earth elements; and depletion in high field strength elements, such as Ta, Nb, P, and Ti. These rocks exhibit moderate Eu(Eu/Eu*=0.86–1.04) and Ce(Ce/Ce*=0.63–0.96) anomalies. Their(87 Sr/86 Sr)i, εNd(t), zircon εHf(t) and δ18 O values range from 0.70839 to 0.71013, from-10.16 to-12.45, from-19.6 to-5.8, and from 5.69‰ to 8.54‰, respectively, and their Nd and Hf two-stage model ages(TDM2) are 1.67–1.86 Ga and 1.27–2.02 Ga, respectively. These data reflect the primary partial melting of Paleoproterozoic to Mesoproterozoic lower crust with minor residual continental lithospheric mantle and supracrustal metasediments. The lithosphere was likely thickened along the southeastern margin of the Tibetan Plateau following the Indian-Asian continentcontinent collision(65–41 Ma). During the post-collision phase(36–16 Ma), the transition from a compressional to extensional setting triggered the convective removal of the over-thickened CLM beneath the Yangtze craton, which led to the upwelling of asthenospheric materials. This process created alkali-rich and high-K magma through the partial melting of the thickened lower crust. Magma that carried Cu-Au-Pb-Ag minerals was emplaced by strike-slip motion along the E-to W-or ENE-to WSWtrending tectonically weak zone, finally forming an alkaline porphyry Cu-Au-Pb-Ag polymetallic deposit.展开更多
The δ18O values of vein quartz of different stages from the Yinshan ore deposit are constant around 16‰ and the calculated δ18OH2O values attain 8‰± ; the δDH2O values of fluid inclu-sions in vein quartz are...The δ18O values of vein quartz of different stages from the Yinshan ore deposit are constant around 16‰ and the calculated δ18OH2O values attain 8‰± ; the δDH2O values of fluid inclu-sions in vein quartz are constant at about-60‰. From the surface down to 1200 m below the δ18O values of altered rocks gradually decrease from 15‰± to 11‰± . Various water-rock inversion calculations indicate that the ore fluids were formed by the interaction between meteoric water and phyllite at 350℃ and the effective W/ R value of around 0.1. When the water-rock exchange in the upper mineralization system took place, the effective W / R value increased to 5.0 or more. As a result, an evolution and mineralization model of a buffered open system with two-stage water-rock interactions is proposed in this study.展开更多
The Mengyejing potash deposit is located in the southern port of the Simao Basin, Yunnan Province, and is hosted in mid-Cretaceous strata. The chemical compositions of fluid inclusions in halite crystals, collected fr...The Mengyejing potash deposit is located in the southern port of the Simao Basin, Yunnan Province, and is hosted in mid-Cretaceous strata. The chemical compositions of fluid inclusions in halite crystals, collected from the level-610 adit in the deposit, were analysed by laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS). The results show that the brine is of the Na-K-Mg-Ca-Cl type and has K concentrations that are distinctly higher than those of Mg and Ca, unlike normal brines associated with Cretaceous halite. The high K concentrations indicate that the degree of evaporation of the ancient Mengyejing saline lake was very high, reaching the sylvite deposition stage but rarely reaching the carnallite deposition stage. The trajectory of the H and O isotopic compositions of the brines in the halite-hosted fluid inclusions corresponds to intense evaporation, indicating that the net evaporation exceeded the net inflow of brines. These brine compositions in halite-hosted fluid inclusions were likely formed by the dissolution of previously deposited K-bearing minerals by fresh continental and/or seawater, forming a type of modified seawater, with deep hydrothermal fluids potentially supplying additional potassium. The basin likely experienced multiple seawater incursion, dissolution and redeposition events in a high-temperature environment with high evaporation rates.展开更多
Stable carbon isotope geochemistry provides important information for the recognition of funda- mental isotope exchange processes related to the movement of carbon in the lithosphere and permits the elab- oration of m...Stable carbon isotope geochemistry provides important information for the recognition of funda- mental isotope exchange processes related to the movement of carbon in the lithosphere and permits the elab- oration of models for the global carbon cycle. Carbon isotope ratios in fluid-deposited graphite are powerful tools for unravelling the ultimate origin of carbon (organic matter, mantle, or carbonates) and help to constrain the fluid history and the mechanisms involved in graphite deposition. Graphite precipitation in fluid-deposited occurrences results from C02- and/or CH4-bearing aqueous fluids. Fluid flow can be considered as both a closed (without replenishment of the fluid) or an open system (with renewal of the fluid by successive fluid batches). In closed systems, carbon isotope systematics in graphite is mainly governed by Rayleigh precipi- tation and/or by changes in temperature affecting the fractionation factor between fluid and graphite. Such processes result in zoned graphite crystals or in successive graphite generations showing, in both cases, isotopic variation towards progressive 13C or 12C enrichment (depending upon the dominant carbon phase in the fluid, C02 or CH4, respectively). In open systems, in which carbon is episodically introduced along the fracture systems, the carbon systematics is more complex and individual graphite crystals may display oscillatory zoning because of Rayleigh precipitation or heterogeneous variations of 613C values when mixing of fluids or changes in the composition of the fluids are the mechanisms responsible for graphite precipitation.展开更多
Systematical Sr, Nd and O isotopic studies were made on the Huashan granite complex in Guangxi. Incombination with the studies of geological, petrological and geochemical data, it is believed that the complexconsists ...Systematical Sr, Nd and O isotopic studies were made on the Huashan granite complex in Guangxi. Incombination with the studies of geological, petrological and geochemical data, it is believed that the complexconsists of granites of three stages. with different geneses and different source materials. They are not the prod-ucts of differentiation and evolution of one single consanguineous magma. Granites of the 1st stage are of theIndosinian syntectic type or I type, also derived from a mixed mantle-crustal source. Those of the 2nd stage areof the early Yanshanian syntectic type or I type. also derived from a mixed mantle-crustal source, and those ofthe 3rd stage are of the late Yanshanian transformed type or S type. derived from a crustal source.展开更多
In the last ten years, with important discoveries from oil and gas exploration in the Dabashan foreland depression belt in the borderland between Shanxi and Sichuan provinces, the relationship between the formation an...In the last ten years, with important discoveries from oil and gas exploration in the Dabashan foreland depression belt in the borderland between Shanxi and Sichuan provinces, the relationship between the formation and evolution of, and hydrocarbon accumulation in, this foreland thrust belt from the viewpoint of basin and oil and gas exploration has been studied. At the same time, there has been little research on the origin of fluids within the belt. Based on geochemical system analysis including Z values denoting salinity and research on δ13C, δ18O and S7Sr/S6Sr isotopes in the host rocks and veins, the origin of paleofluids in the foreland thrust belt is considered. There are four principal kinds of paleofluid, including deep mantle-derived, sedimentary, mixed and meteoric. For the deep mantle-derived fluid, the δ13C is generally less than -5.0‰PDB, δ18O less than -10.0‰PDB, Z value less than 110 and 87Sr/86Sr less than 0.70600; the sedimentary fluid is mainly marine carbonate- derived, with the δ13C generally more than -2.0‰PDB, 18δO less than -10.0‰PDB, Z value more than 120 and STSr/S6Sr ranging from 0.70800 to 0.71000; the mixed fluid consists mainly of marine carbonate fluid (including possibly a little mantle-derived fluid or meteoric water), with the j13C generally ranging from -2.0‰ to -8.0‰PDB, δ18O from -10.0‰ to -18.0‰ PDB, Z value from 105 to 120 and 87Sr/86Sr from 0.70800 to 0.71000; the atmospheric fluid consists mainly of meteoric water, with the δ13C generally ranging from 0.0‰ to -10.0‰PDB, δ18O less than -8.0%rPDB, Z value less than 110 and 87Sr/86Sr more than 0.71000. The Chengkou fault belt encompasses the most complex origins, including all four types of paleofluid; the Zhenba and Pingba fault belts and stable areas contain a simple paleofluid mainly of sedimentary type; the Jimingsi fault belt contains mainly sedimentary and mixed fluids, both consisting of sedimentary fluid and meteoric water. Jurassic rocks of the foreland depression belt contain mainly meteoric fluid.展开更多
The Yinchanggou-Qiluogou Pb-Zn deposit,located in the western Yangtze Block,southwest China,is hosted by the Upper Sinian Dengying Formation dolostone.Ore bodies occur in the Qiluogou anticline and the NS-and NNW-tren...The Yinchanggou-Qiluogou Pb-Zn deposit,located in the western Yangtze Block,southwest China,is hosted by the Upper Sinian Dengying Formation dolostone.Ore bodies occur in the Qiluogou anticline and the NS-and NNW-trending faults.Sulfide ores mainly consist of sphalerite,pyrite,galena and calcite,with subordinate dolomite and quartz.Seventeen ore bodies have been discovered to date and they have a combined 1.0 million tons of sulfide ores with average grades of 2.27wt%Zn and 6.89wt%Pb.The δD(H2O-SMOW) and δ18O(H2O-SMOW) values of fluid inclusions in quartz and calcite samples range from-68.9‰ to-48.7‰ and 7.3‰ to 15.9‰,respectively,suggesting that H2O in the hydrothermal fluids sourced from metamorphic water.Calcite samples have δ13C(PDB) values ranging from-6.2‰ to-4.1‰ and δ18O(SMOW) values ranging from 15.1‰ to 17.4‰,indicating C and O in the hydrothermal fluids likely derived from a mixed source of metamorphic fluids and the host carbonates.The δ34S(CDT) values of sulfide minerals range from 5.5‰ to 20.3‰,suggesting that thermal chemical reduction of sulfate minerals in evaporates were the most probable source of S in the hydrothermal fluids.The 206Pb/204Pb,207Pb/204Pb and 208Pb/204Pb ratios of sulfide minerals fall in the range of 18.11 to 18.40,15.66 to 15.76 and 38.25 to 38.88,respectively.The Pb isotopic data of the studied deposit plot near the upper crust Pb evolution curve and overlap with the age-corrected Proterozoic basement rocks and the Upper Sinian Dengying Formation hosting dolostone.This indicates that the Pb originated from a mixed source of the basement metamorphic rocks and the ore-hosting carbonate rocks.The ore geology and C-H-O-S-Pb isotopic data suggest that the YinchanggouQiluogou deposit is an unusual carbonate-hosted,strata-bound and epigenetic deposit that derived ore-forming materials from a mixed source of the underlying Porterozoic basements and the Sinian hosting carbonates.展开更多
The Weiquan Ag-polymetallic deposit is located on the southern margin of the Central Asian Orogenic Belt and in the western segment of the Aqishan-Yamansu arc belt in East Tianshan,northwestern China. Its orebodies, c...The Weiquan Ag-polymetallic deposit is located on the southern margin of the Central Asian Orogenic Belt and in the western segment of the Aqishan-Yamansu arc belt in East Tianshan,northwestern China. Its orebodies, controlled by faults, occur in the lower Carboniferous volcanosedimentary rocks of the Yamansu Formation as irregular veins and lenses. Four stages of mineralization have been recognized on the basis of mineral assemblages, ore fabrics, and crosscutting relationships among the ore veins. Stage I is the skarn stage(garnet + pyroxene), Stage Ⅱ is the retrograde alteration stage(epidote + chlorite + magnetite ± hematite 士 actinolite ± quartz),Stage Ⅲ is the sulfide stage(Ag and Bi minerals + pyrite + chalcopyrite + galena + sphalerite + quartz ± calcite ± tetrahedrite),and Stage IV is the carbonate stage(quartz + calcite ± pyrite). Skarnization,silicification, carbonatization,epidotization,chloritization, sericitization, and actinolitization are the principal types of hydrothermal alteration. LAICP-MS U-Pb dating yielded ages of 326.5±4.5 and 298.5±1.5 Ma for zircons from the tuff and diorite porphyry, respectively. Given that the tuff is wall rock and that the orebodies are cut by a late diorite porphyry dike, the ages of the tuff and the diorite porphyry provide lower and upper time limits on the age of ore formation. The δ13C values of the calcite samples range from-2.5‰ to 2.3‰, the δ18OH2 Oand δDVSMOWvalues of the sulfide stage(Stage Ⅲ) vary from 1.1‰ to 5.2‰ and-111.7‰ to-66.1‰, respectively,and the δ13C, δ18OH2 Oand δDV-SMOWvalues of calcite in one Stage IV sample are 1.5‰,-0.3‰, and-115.6‰, respectively. Carbon, hydrogen, and oxygen isotopic compositions indicate that the ore-forming fluids evolved gradually from magmatic to meteoric sources. The δ34SV-CDTvalues of the sulfides have a large range from-6.9‰ to 1.4‰, with an average of-2.2‰, indicating a magmatic source, possibly with sedimentary contributions. The206Pb/204Pb,207Pb/204Pb, and208Pb/204Pb ratios of the sulfides are 17.9848-18.2785,15.5188-15.6536, and 37.8125-38.4650, respectively, and one whole-rock sample at Weiquan yields206Pb/204Pb,207Pb/204Pb, and208Pb/204Pb ratios of 18.2060, 15.5674, and 38.0511,respectively. Lead isotopic systems suggest that the ore-forming materials of the Weiquan deposit were derived from a mixed source involving mantle and crustal components. Based on geological features, zircon U-Pb dating, and C-H-OS-Pb isotopic data, it can be concluded that the Weiquan polymetallic deposit is a skarn type that formed in a tectonic setting spanning a period from subduction to post-collision. The ore materials were sourced from magmatic ore-forming fluids that mixed with components derived from host rocks during their ascent, and a gradual mixing with meteoric water took place in the later stages.展开更多
The Nage Cu-Pb deposit, a new found ore deposit in the southeast Guizhou province, southwest China, is located on the southwestern margin of the Jiangnan Orogenic Belt. Ore bodies are hosted in slate and phyllite of N...The Nage Cu-Pb deposit, a new found ore deposit in the southeast Guizhou province, southwest China, is located on the southwestern margin of the Jiangnan Orogenic Belt. Ore bodies are hosted in slate and phyllite of Neoproterozoic Jialu and Wuye Formations, and are structurally controlled by EW-trending fault. It contains Cu and Pb metals about 0.12 million tonnes with grades of 0.2 wt% to 3.4 wt% Cu and 1.1 wt% to 9.27 wt% Pb. Massive and disseminated Cu-Pb ores from the Nage deposit occur as either veinlets or disseminations in silicified rocks. The ore minerals include chalcopyrite, galena and pyrite, and gangue minerals are quartz, sericite and chlorite. The H-O isotopic compositions of quartz, S-Cu-Pb isotopic compositions of sulfide minerals, Pb isotopic compositions of whole rocks and ores have been analyzed to trace the sources of ore-forming fluids and metals for the Nage Cu-Pb deposit. The oSCUNBs values of chalcopyrite range from -0.09% to +0.33%0, similar to basic igneous rocks and chalcopyrite from magmatic deposits. J6SCUNBS values of chalcopyrite from the early, middle and final mineralization stages show an increasing trend due to 63Cu prior migrated in gas phase when fluids exsolution from magma, ja4ScDT values of sulfide minerals range from -2.7‰ to +2.8‰, similar to mantle-derived sulfur (0±3‰). The positive correlation between J65CUNBs and ja4SCDT values of chalcopyrite indicates that a common source of copper metal and sulfur from magma. JDu2o- SMOW and JlSOH2O-SMOW values of water in fluid inclusions of quartz range from -60.7‰ to -44.4‰ and +7.9‰ to +9.0%0 (T=260℃), respectively and fall in the field for magmatic and metamorphic waters, implicating that mixed sources for H20 in hydrothermal fluids. Ores and sulfide minerals have a small range of Pb isotopic compositions (208Pb/204pb=38.152 to 38.384, 207Pb/204Pb=15.656 to 17.708 and 206Pb/204Pb=17.991 to 18.049) that are close to orogenic belt and upper crust Pb evolution curve, and similar to Neoproterozoic host rocks (208Pb/204Pb=38.201 to 38.6373, 207pb/204pb=15.648 to 15.673 and 206pb/204pb=17.820 to 18.258), but higher than diabase (208Pb/204pb=37.830 to 38.012, 207pb/204pb=15.620 to 15.635 and 206pb/204pb=17.808 to 17.902). These results imply that the Pb metal originated mainly from host rocks. The H-O-S-Cu-Pb isotopes tegather with geology, indicating that the ore genesis of the Nage Cu-Pb deposit is post-magmatic hydrothermal type.展开更多
The Hongshi copper deposit is located in the middle of the Kalatage ore district in the northern segment of the Dananhu-Tousuquan island-arc belt in East Tianshan, Xinjiang, NW China. This study analyses the fluid inc...The Hongshi copper deposit is located in the middle of the Kalatage ore district in the northern segment of the Dananhu-Tousuquan island-arc belt in East Tianshan, Xinjiang, NW China. This study analyses the fluid inclusions and H, O, and S stable isotopic compositions of the deposit. The fluid-inclusion data indicate that aqueous fluid inclusions were trapped in chalcopyrite-bearing quartz veins in the gangue minerals. The homogenization temperatures range from 108°C to 299°C, and the salinities range from 0.5% to 11.8%, indicating medium to low temperatures and salinities. The trapping pressures range from 34.5 MPa to 56.8 MPa. The δ^(18)O_(H_2O) values and δD values of the fluid range from -6.94‰ to -5.33‰ and from -95.31‰ to -48.20‰, respectively. The H and O isotopic data indicate that the ore-forming fluid derived from a mix of magmatic water and meteoric water and that meteoric water played a significant role. The S isotopic composition of pyrite ranges from 1.9‰ to 5.2‰, with an average value of 3.1‰, and the S isotopic composition of chalcopyrite ranges from -0.9‰ to 4‰, with an average value of 1.36‰, implying that the S in the ore-forming materials was derived from the mantle. The introduction of meteoric water decreased the temperature, volatile content, and pressure, resulting in immiscibility. These factors may have been the major causes of the mineralization of the Hongshi copper deposit. Based on all the geologic and fluid characteristics, we conclude that the Hongshi copper deposit is an epithermal deposit.展开更多
This paper focuses on the effect of the later hydrotherm on uraniferous leucogranites and the stages of uranium mineralization. Here, we review C-H-O stable isotope, elements and fluid geochemistry of uraniferous leuc...This paper focuses on the effect of the later hydrotherm on uraniferous leucogranites and the stages of uranium mineralization. Here, we review C-H-O stable isotope, elements and fluid geochemistry of uraniferous leucogranites in Gaudeanmus, Namibia. The results show that there is significant increasing amount of rare earth element from non-mineralized to uraniferous leucogra-nites, indicating the synchronization of REE enrichment and uranium mineralization. Uranium enrichment may have close relations with Pb, Th, Co, Ni, REE in this region, so REE and U evidently exist homology. There are at least two stages of uranium mineralization by later hydrothermal alteration: firstly, due to magnatic residual high temperature and low salinity fluid, the temperature of main metallogenetic epoch ranges from 470°C to 530°C, salinity ranges from 3.55% to 9.60% NaCleq, and C, H, O stable isotope is -23‰ - -13.6‰, -53.3‰ - -46.4‰, 7.71‰ - 8.81‰, respectively. Secondly, due to superim-posed hydrothermal fluid, the temperature, salinity, and C, H, O stable isotope is 150°C - 220°C, 4.65% - 19.05% NaCleq, -20.3‰ -?-3.7‰, -64.7‰ - -53.6‰, 1.49‰ - 1.99‰, respectively. The fluid for reformation is derived from postmagmatic fluid, mixed with a number of meteoric water.展开更多
A novel pulse 18O-16O isotopic exchange (PIE) technique for measurement of the rate of oxygen surface exchange of oxide ion conductors was presented. The technique employs a continuous flow packed-bed micro-reactor lo...A novel pulse 18O-16O isotopic exchange (PIE) technique for measurement of the rate of oxygen surface exchange of oxide ion conductors was presented. The technique employs a continuous flow packed-bed micro-reactor loaded with the oxide powder. The isothermal response to an 18O-enriched pulse passing through the reactor, thereby maintaining chemical equilibrium, is measured by on-line mass spectrometry. Evaluation of the apparent exchange rate follows from the uptake of 18O by the oxide at given reactor residence time and surface area available for exchange. The developed PIE technique is rapid, simple and highly suitable for screening and systematic studies. No rapid heating/quenching steps are required to facilitate 18O tracer anneal or analysis, as in other commonly used techniques based upon oxygen isotopic exchange. Moreover, the relative distribution of the oxygen isotopologues 18O2, 16O18O, and 16O2 in the effluent pulse provides insight into the mechanism of the oxygen exchange reaction. The PIE technique has been demonstrated by measuring the exchange rate of selected oxides with enhanced oxide ionic conductivity in the range of 350?900 oC. Analysis of the experimental data in terms of a model with two consecutive, lumped steps for the isotopic exchange reaction shows that for mixed conductors Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF) and La2NiO4+δ the reaction is limited by the apparent rate of dissociative adsorption of O2 molecules at the oxide surface. For yttria-stabilized zirconia (YSZ), a change-over takes place, from rate-limitations by oxygen incorporation below ∽800 oC to rate-limitations by O2 dissociative adsorption above this temperature. Good agreement is obtained with exchange rates reported for these materials in literature.展开更多
The Luxi-Xianrenzhang diabase dikes were emplaced into the eastern part of the Guidong composite granitoids in northern Guangdong Province at the end of the Early Cretaceous. They show tholeiitic features, enrichment ...The Luxi-Xianrenzhang diabase dikes were emplaced into the eastern part of the Guidong composite granitoids in northern Guangdong Province at the end of the Early Cretaceous. They show tholeiitic features, enrichment in large ion lithophile elements, slight enrichment in light rare earth elements, depletion in Zr and Hf, and basically no depletion in Nb and Ta and no Eu anomaly. They are similar to intraplate basalt in terms of trace element characteristics. They have high εNd(t) values (3.6-4.9), initial ^87Sr/^86Sr ratios (0.70530-70641) and δ^18O values and Dupal anomaly of Pb isotope compositions. Their Sr-Nd, Pb-Sr, Pb-Nd and Pb-Pb isotopes plot between DMM and EMII, with Pb similar to EMII, Nd relatively close to DMM and Sr in between. This profile suggests that the diabase dikes studied were derived from partial melting of a mantle source that had been subjected to metasomatism by fluids originated from a subduction zone under a tectonic environment of crustal extension and lithosphere thinning in the late Yanshanian.展开更多
文摘Geologic, petrographic and petrochemical studies of the late Mesozoic K-rich melanocratic dykes, including lamprophyres, andesite porphyrites and dacite-porphyry in the gold field system in the Jiaodong Peninsula, China, have shown that these dykes are characterized by rich potassium and alkali but poor titanium. They belong to an ultra-high potassic, shoshonitic and high potassic calc-alkaline rock series. The parental magma has relatively high initial strontium ratios ((87Sr/86Sr),=0.70895-0.71140) and low (143Nd/144Nd)1 ratios (varying from 0.51135 to 0.51231); and its δ18Osmow, whole rock values vary from +5.8%c to +10.6%c with a mean of +7.1%c. These features suggest that the source region of the magma is an enriched mantle wedge transformed from a continental lithosphere mantle which has experienced metasomatism by mantle-derived fluids with H2O-dominated fluids that were provided during the underthrusting of an ocean crust. The initial magma was generated by low-degree partial melting of the enriched mantle in its mature stage in the back-arc spreading environment. The evolution of magmas is associated with two trends, i.e., fractional crystallization and mixing with or intensive contamination by palaeo-crust materials or metamorphic rocks. The former process is evident in the gold field system of quartz-vein type, whereas the latter is dominated in the gold field system of the altered-rock type. This conclusion is very important for more detailed study of petrogenesis and mineralization through the crust-mantle interaction (exchange) in the Mesozoic in this region.
基金funded by the National Key R&D Plan (Nos. 2017YFC0601403 and 2016YFC0600106)the National Natural Science Foundation of China (No. 41272110)the basic research program of the First Institute of Oceanography (No. 2015T02)
文摘The Huoshenmiao δeposit is Mo skarn δeposit, located in the western part of the Luanchuan ore δistrict.Mineralization process can be δivided into a skarn and a quartz-sulfide episodes with six stages: prograde(I), retrograde(II), quartz-K-feldspar(III), quartz-molybdenite(IV), quartz-pyrite(V), and quartzcalcite(VI). A combined study of geochronology, fluid inclusion(FI), and stable isotopes was conducted to constrain the mineralization age, source of ore materials, as well as the origin and evolution of the ore-forming fluids. Molybdenite Ree Os δating indicates that the δeposit was formed in the Late Jurassic(~145 Ma). The δ^(34)S values of sulfides range from 3.0‰ to 7.1‰, implying that the ore materials in the δeposit are magmatic in origin. Three types and six subtypes of FIs are δistinguished, namely, aqueous two-phase(W_1-and W_2-type), δaughter mineral-bearing multiphase(S_1-and S_2-type), and CO_2-bearing three-phase(C_1-and C_2-type). In stages I and II, the W_1-type FIs δisplay homogenization temperatures(Th) from 496°C to >600°C, with salinities of 14.9-18.3 wt.% NaCl eqv. The FIs in stages III, IV and early stage V composed of coeval S-, C-and W-types, respectively homogenize at similar Th, suggesting the occurrence of boiling. The W1-type FIs in late stage V and stage VI, yield Th of 102-406°C and salinities of 0-4.7 wt.% NaCl eqv. The δD_(H_2O)and δ^(18) O(H_2O)values of the ore-forming fluids in quartz-sulfide episode vary from-112‰ to-76‰, and 11.0‰ to 1.0‰, respectively. All these above observations reveal that the early ore-forming fluids are magmatic in origin, and characterized by high temperature and moderate to high salinity, and gradually evolve to low temperature, low salinity meteoric water. The Huoshenmiao Mo δeposit is associated with the magmatism event induced by the protracted subduction of the Izanagi plate beneath the eastern China continent. The δecrease in temperature, salinity and f(O_2), as well as change of p H δue to boiling and fluid-rock interaction, are the main factors controlling Mo δeposition.
基金financially supported by the National Key Research and Development Program of China (Grant No.2017YFC0601306)the National Natural Science Foundation of China (Grant No.41390444)+1 种基金the Program of the China Geological Survey(Grant No.DD20160344)supported by Team 707, Heilongjiang Bureau of Geological Exploration for Nonferrous Metals
文摘Epithermal gold deposits are typical precious metal deposits related to volcanic and subvolcanic magmatism.Due to the lack of direct geological and petrographic evidences,the origin of the ore-forming fluid is deduced from the spatial diagenesis-mineralization relationship,chronological data,physicochemical characteristics of mineral fluid inclusions,mineral or rock elements and isotopic geochemical characteristics.By objectively examining this scientific problem via a geological field survey and petrographic analysis of the Gaosongshan epithermal gold deposit,we recently discovered and verified the following points:(1) Pyrite-bearing spherical quartz aggregates (PSQA) occur in the rhyolitic porphyry;(2) the mineralization is structurally dominated by WNW- and ENE-trending systems and occurs mostly in hydrothermal breccias and pyrite-quartz veins,and the ore types are mainly hematite-crusted quartz,hydrothermal breccia,massive pyrite-quartz,etc.;(3) the alteration types consist of prevalent silicification,sericitization,propylitization and carbonation,with local adularization and illitization.The ore minerals are mainly pyrite,primary hematite,native gold,and electrum,with lesser amounts of chalcopyrite,magnetite,sphalerite,and galena,indicating a characteristic epithermal low-sulfidation deposit.The ore-forming fluid may have been primarily derived from magmatic fluid exsolved from a crystallizing rhyolitic porphyry magma.Further zircon U-Pb geochronology,fluid inclusion,physicochemical and isotopic geochemical analyses revealed that (1) rhyolitic porphyry magmatism occurred at 104.6 ± 1.0 Ma,whereas the crystallization of the PSQA occurred at 100.8 ± 2.1 Ma;(2) the hydrothermal fluid of the pre-ore stage was an exsolved CO2-bearing H2O-NaCl magmatic fluid that produced inclusions mainly composed of pure vapor (PV),vapor-rich (WV) and liquid-rich (WL) inclusions with a small number of melt-(M) and solid-bearing (S) inclusions;mineralization-stage quartz contains WL and rare PV,WV and pure liquid (PL) inclusions characterized by the H2O-NaCl system with low formation temperatures and low salinities;(3) the characteristics of hydrogen,oxygen,sulfur,and lead isotopes and those of rare earth elements (REEs) provide insight into the affinity between PSQA and orebodies resulting from juvenile crust or enriched mantle.Combined with previous research on the mineralogenetic epoch (99.32 ± 0.01 Ma),we further confirm that the mineralization of the deposit occurred in the late Early Cretaceous,which coincides with the extension of the continental margin induced by subduction of the Pacific Plate beneath the Eurasian Plate.The formation of the ore deposit was proceeded by a series of magmatic and hydrothermal events,including melting of enriched juvenile crust,upwelling,the eruption and emplacement of the rhyolitic magma,the exsolution and accumulation of magmatic hydrothermal fluid,decompression,the cooling and immiscibility/boiling of the fluid,and mixing of the magmatic fluid with meteoric water,in association with water-rock interaction.
基金supported by the National Natural Science Foundation of China(U1403193,21643012)~~
文摘The nickel‐based complex Ni‐CH3CH2NH2‐intercalated niobate layered perovskite Ni‐CH3CH2NH2/H1.78Sr0.78Bi0.22Nb2O7was synthesized via a facile in situ chemical reaction method.Using ultrathin H1.78Sr0.78Bi0.22Nb2O7nanosheets and nickel acetate as precursors.The composition,structure,photophysical properties,and photocatalytic activity for H2production of Ni‐CH3CH2NH2/H1.78Sr0.78Bi0.22Nb2O7were studied systematically.The photocatalyst loaded with0.5wt%Ni exhibited the highest H2evolution rate of372.67μmo/h.This was0.54times higher than the activity of the H1.78Sr0.78Bi0.22Nb2O7nanosheets.The activity of the optimized Ni‐CH3CH2NH2/H1.78Sr0.78Bi0.22Nb2O7was comparable to that of the Pt‐loaded sample under the same reaction conditions.The photocatalytic activity of the Ni‐CH3CH2NH2/H1.78Sr0.78Bi0.22Nb2O7was mainly attributed to the excellent separation of photogenerated carriers,after formation of the intercalated complex Ni‐CH3CH2NH2.This study provides a facile strategy to synthesize a non‐precious metal‐loaded photocatalyst for H2production.
文摘Nd, Sr and O isotopic study on the spilite-keratophyre sequence in Xiqiu shows that its ∈_(Nd) values are inthe range of 4.02-5.26, and its ∈_(Sr) values, +1.4-2.6. According to the points of these data in the ∈_(Nd)-T,∈_(Sr)-T and ∈_(Nd)-∈_(Sr) diagrams, the spilite-keratophyre is interpreted as being slightly contaminated by crustalmaterials. Its δ^(18)O values are 3.9-5.0‰. The depletion of ^(18)O in the rocks resulted from the influence ofseawater hydrothermal alteration during or soon after the rock formation. Based on the isotopic characteristicsand available geochemical data, it is believed that the spilite-keratophyre was formed in the well-developedisland-arc environment during the Late Proterozoic subduction of the palaeo-Pacific plate beneath thesoutheastern margin of the Yangtze massif.
基金financially supported by grants from the National Key Research and Development Project of China(2021YFC2901903 and 2017YFC0602705)the Jiangxi Province(2020101003)the East China University of Technology(1410000874)。
文摘The Jiajika granitic-and pegmatite-type lithium deposit,which is in the Songpan-Garze Orogenic Belt in western Sichuan Province,China,is the largest in Asia.Previous studies have examined the geochemistry and mineralogy of pegmatites and their parental source rocks to determine the genesis of the deposit.However,the evolution of magmatic-hydrothermal fluids has received limited attention.We analyzed He–Ar–H–O isotopes to decipher the ore-fluid nature and identify the contribution of fluids to mineralization in the late stage of crystallization differentiation.In the Jiajika ore field,two-mica granites,pegmatites(including common pegmatites and spodumene pegmatites),metasandstones,and schists are the dominant rock types exposed.Common pegmatites derived from early differentiation of the two-mica granitic magmas before they evolved into spodumene pegmatites during the late stage of the magmatic evolution.Common pegmatites have~3He/~4He ratios that vary from 0.18 to 4.68 Ra(mean1.62 Ra),and their~(40)Ar/~(36)Ar ratios range from 426.70 to 1408.06(mean 761.81);spodumene pegmatites have~3He/~4He ratios that vary from 0.18 to 2.66 Ra(mean 0.87Ra)and their~(40)Ar/~(36)Ar ratios range from 402.13 to 1907.34(mean 801.65).These data indicate that the hydrothermal fluids were shown a mixture of crust-and mantle-derived materials,and the proportion of crustderived materials in spodumene pegmatites increases significantly in the late stage of the magmatic evolution.Theδ~(18)OH_(2)O–VSMOWvalues of common pegmatites range from 6.2‰to 10.9‰,with a mean value of 8.6‰,andδDV–SMOWvalues vary from-110‰to-72‰,with a mean o f-85‰.Theδ~(18)OH_(2)O–VSMOWvalues of spodumene pegmatites range from 5.3‰to 13.2‰,with a mean of 9.1‰,andδDV–SMOWvalues vary from-115‰to-77‰,with a mean of-91‰.These data suggest that the ore-forming fluids came from primary magmatic water gradually mixing with more meteoric water in the late stage of the magmatic evolution.Based on the He–Ar–H–O and other existing data,we propose that the oreforming metals are mainly derived from the upper continental crust with a minor contribution from the mantle,and the fluid exsolution and addition of meteoric water during the formation of pegmatite contributed to the formation of the Jiajika superlarge lithium deposit.
基金funded by the Open Foundation of the Beijing SHRIMP Center (DDC15-016)the Applied Basic Research Program Youth Project of Yunnan Province (2016DF031)the National Basic Research Program of China (2015CB452605)
文摘The Laojiezi alkaline volcanic rocks, which are located in the intraplate region of the Yangtze craton, coincide with the formation of the Jinshajiang-Ailaoshan-Red River alkaline rock belt. Although this belt has been widely studied by geologists because of its porphyry-related Pb-Ag-Au polymetallic deposit and geotectonic location, the material sources of this belt are still debate. Whole-rock analyses show that these rocks have high total alkali contents(3.73–11.08 wt%), and their aluminum saturation index(ASI) values widely vary from 0.82 to 3.07, which comprise a metaluminous-peraluminous magma series. These rocks are characterized by high K(K2 O/Na2 O>1) and low Ti and Mg contents; enrichment in large-ion lithophile elements, such as Rb, Ba, K and light rare earth elements; and depletion in high field strength elements, such as Ta, Nb, P, and Ti. These rocks exhibit moderate Eu(Eu/Eu*=0.86–1.04) and Ce(Ce/Ce*=0.63–0.96) anomalies. Their(87 Sr/86 Sr)i, εNd(t), zircon εHf(t) and δ18 O values range from 0.70839 to 0.71013, from-10.16 to-12.45, from-19.6 to-5.8, and from 5.69‰ to 8.54‰, respectively, and their Nd and Hf two-stage model ages(TDM2) are 1.67–1.86 Ga and 1.27–2.02 Ga, respectively. These data reflect the primary partial melting of Paleoproterozoic to Mesoproterozoic lower crust with minor residual continental lithospheric mantle and supracrustal metasediments. The lithosphere was likely thickened along the southeastern margin of the Tibetan Plateau following the Indian-Asian continentcontinent collision(65–41 Ma). During the post-collision phase(36–16 Ma), the transition from a compressional to extensional setting triggered the convective removal of the over-thickened CLM beneath the Yangtze craton, which led to the upwelling of asthenospheric materials. This process created alkali-rich and high-K magma through the partial melting of the thickened lower crust. Magma that carried Cu-Au-Pb-Ag minerals was emplaced by strike-slip motion along the E-to W-or ENE-to WSWtrending tectonically weak zone, finally forming an alkaline porphyry Cu-Au-Pb-Ag polymetallic deposit.
基金This research was supported by the National Natural Science Foundation of China (Grant No. 49473176)the Chinese Foundation for the Development of Geological Science and Technology(Grant No. 89042)
文摘The δ18O values of vein quartz of different stages from the Yinshan ore deposit are constant around 16‰ and the calculated δ18OH2O values attain 8‰± ; the δDH2O values of fluid inclu-sions in vein quartz are constant at about-60‰. From the surface down to 1200 m below the δ18O values of altered rocks gradually decrease from 15‰± to 11‰± . Various water-rock inversion calculations indicate that the ore fluids were formed by the interaction between meteoric water and phyllite at 350℃ and the effective W/ R value of around 0.1. When the water-rock exchange in the upper mineralization system took place, the effective W / R value increased to 5.0 or more. As a result, an evolution and mineralization model of a buffered open system with two-stage water-rock interactions is proposed in this study.
基金supported by the Basic Research Project for the Central Public Welfare Scientific Institutions of China (No.K1405)the National Key Project for Basic Research of China (No.2011CB403007)the National Natural Science Foundation of China (No.41572067)
文摘The Mengyejing potash deposit is located in the southern port of the Simao Basin, Yunnan Province, and is hosted in mid-Cretaceous strata. The chemical compositions of fluid inclusions in halite crystals, collected from the level-610 adit in the deposit, were analysed by laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS). The results show that the brine is of the Na-K-Mg-Ca-Cl type and has K concentrations that are distinctly higher than those of Mg and Ca, unlike normal brines associated with Cretaceous halite. The high K concentrations indicate that the degree of evaporation of the ancient Mengyejing saline lake was very high, reaching the sylvite deposition stage but rarely reaching the carnallite deposition stage. The trajectory of the H and O isotopic compositions of the brines in the halite-hosted fluid inclusions corresponds to intense evaporation, indicating that the net evaporation exceeded the net inflow of brines. These brine compositions in halite-hosted fluid inclusions were likely formed by the dissolution of previously deposited K-bearing minerals by fresh continental and/or seawater, forming a type of modified seawater, with deep hydrothermal fluids potentially supplying additional potassium. The basin likely experienced multiple seawater incursion, dissolution and redeposition events in a high-temperature environment with high evaporation rates.
基金contribution from project CGL2010-16008 (Spanish Ministry for Science and Innovation)
文摘Stable carbon isotope geochemistry provides important information for the recognition of funda- mental isotope exchange processes related to the movement of carbon in the lithosphere and permits the elab- oration of models for the global carbon cycle. Carbon isotope ratios in fluid-deposited graphite are powerful tools for unravelling the ultimate origin of carbon (organic matter, mantle, or carbonates) and help to constrain the fluid history and the mechanisms involved in graphite deposition. Graphite precipitation in fluid-deposited occurrences results from C02- and/or CH4-bearing aqueous fluids. Fluid flow can be considered as both a closed (without replenishment of the fluid) or an open system (with renewal of the fluid by successive fluid batches). In closed systems, carbon isotope systematics in graphite is mainly governed by Rayleigh precipi- tation and/or by changes in temperature affecting the fractionation factor between fluid and graphite. Such processes result in zoned graphite crystals or in successive graphite generations showing, in both cases, isotopic variation towards progressive 13C or 12C enrichment (depending upon the dominant carbon phase in the fluid, C02 or CH4, respectively). In open systems, in which carbon is episodically introduced along the fracture systems, the carbon systematics is more complex and individual graphite crystals may display oscillatory zoning because of Rayleigh precipitation or heterogeneous variations of 613C values when mixing of fluids or changes in the composition of the fluids are the mechanisms responsible for graphite precipitation.
基金supported by the National Natural Science Foundation of China
文摘Systematical Sr, Nd and O isotopic studies were made on the Huashan granite complex in Guangxi. Incombination with the studies of geological, petrological and geochemical data, it is believed that the complexconsists of granites of three stages. with different geneses and different source materials. They are not the prod-ucts of differentiation and evolution of one single consanguineous magma. Granites of the 1st stage are of theIndosinian syntectic type or I type, also derived from a mixed mantle-crustal source. Those of the 2nd stage areof the early Yanshanian syntectic type or I type. also derived from a mixed mantle-crustal source, and those ofthe 3rd stage are of the late Yanshanian transformed type or S type. derived from a crustal source.
基金supported by the National Basic Research Project("973" Project,Grant No. 2006CB202305) and SINOPEC
文摘In the last ten years, with important discoveries from oil and gas exploration in the Dabashan foreland depression belt in the borderland between Shanxi and Sichuan provinces, the relationship between the formation and evolution of, and hydrocarbon accumulation in, this foreland thrust belt from the viewpoint of basin and oil and gas exploration has been studied. At the same time, there has been little research on the origin of fluids within the belt. Based on geochemical system analysis including Z values denoting salinity and research on δ13C, δ18O and S7Sr/S6Sr isotopes in the host rocks and veins, the origin of paleofluids in the foreland thrust belt is considered. There are four principal kinds of paleofluid, including deep mantle-derived, sedimentary, mixed and meteoric. For the deep mantle-derived fluid, the δ13C is generally less than -5.0‰PDB, δ18O less than -10.0‰PDB, Z value less than 110 and 87Sr/86Sr less than 0.70600; the sedimentary fluid is mainly marine carbonate- derived, with the δ13C generally more than -2.0‰PDB, 18δO less than -10.0‰PDB, Z value more than 120 and STSr/S6Sr ranging from 0.70800 to 0.71000; the mixed fluid consists mainly of marine carbonate fluid (including possibly a little mantle-derived fluid or meteoric water), with the j13C generally ranging from -2.0‰ to -8.0‰PDB, δ18O from -10.0‰ to -18.0‰ PDB, Z value from 105 to 120 and 87Sr/86Sr from 0.70800 to 0.71000; the atmospheric fluid consists mainly of meteoric water, with the δ13C generally ranging from 0.0‰ to -10.0‰PDB, δ18O less than -8.0%rPDB, Z value less than 110 and 87Sr/86Sr more than 0.71000. The Chengkou fault belt encompasses the most complex origins, including all four types of paleofluid; the Zhenba and Pingba fault belts and stable areas contain a simple paleofluid mainly of sedimentary type; the Jimingsi fault belt contains mainly sedimentary and mixed fluids, both consisting of sedimentary fluid and meteoric water. Jurassic rocks of the foreland depression belt contain mainly meteoric fluid.
基金financially supported by the National Basic Research Program of China(973 Program,No. 2014CB440905)the Key Program of National Natural Science Foundation(No.41430315)the National Natural Science Foundation of China(Nos.41272111 and 41163001)
文摘The Yinchanggou-Qiluogou Pb-Zn deposit,located in the western Yangtze Block,southwest China,is hosted by the Upper Sinian Dengying Formation dolostone.Ore bodies occur in the Qiluogou anticline and the NS-and NNW-trending faults.Sulfide ores mainly consist of sphalerite,pyrite,galena and calcite,with subordinate dolomite and quartz.Seventeen ore bodies have been discovered to date and they have a combined 1.0 million tons of sulfide ores with average grades of 2.27wt%Zn and 6.89wt%Pb.The δD(H2O-SMOW) and δ18O(H2O-SMOW) values of fluid inclusions in quartz and calcite samples range from-68.9‰ to-48.7‰ and 7.3‰ to 15.9‰,respectively,suggesting that H2O in the hydrothermal fluids sourced from metamorphic water.Calcite samples have δ13C(PDB) values ranging from-6.2‰ to-4.1‰ and δ18O(SMOW) values ranging from 15.1‰ to 17.4‰,indicating C and O in the hydrothermal fluids likely derived from a mixed source of metamorphic fluids and the host carbonates.The δ34S(CDT) values of sulfide minerals range from 5.5‰ to 20.3‰,suggesting that thermal chemical reduction of sulfate minerals in evaporates were the most probable source of S in the hydrothermal fluids.The 206Pb/204Pb,207Pb/204Pb and 208Pb/204Pb ratios of sulfide minerals fall in the range of 18.11 to 18.40,15.66 to 15.76 and 38.25 to 38.88,respectively.The Pb isotopic data of the studied deposit plot near the upper crust Pb evolution curve and overlap with the age-corrected Proterozoic basement rocks and the Upper Sinian Dengying Formation hosting dolostone.This indicates that the Pb originated from a mixed source of the basement metamorphic rocks and the ore-hosting carbonate rocks.The ore geology and C-H-O-S-Pb isotopic data suggest that the YinchanggouQiluogou deposit is an unusual carbonate-hosted,strata-bound and epigenetic deposit that derived ore-forming materials from a mixed source of the underlying Porterozoic basements and the Sinian hosting carbonates.
基金funded by the China Geological Survey (No. 1212011220731)
文摘The Weiquan Ag-polymetallic deposit is located on the southern margin of the Central Asian Orogenic Belt and in the western segment of the Aqishan-Yamansu arc belt in East Tianshan,northwestern China. Its orebodies, controlled by faults, occur in the lower Carboniferous volcanosedimentary rocks of the Yamansu Formation as irregular veins and lenses. Four stages of mineralization have been recognized on the basis of mineral assemblages, ore fabrics, and crosscutting relationships among the ore veins. Stage I is the skarn stage(garnet + pyroxene), Stage Ⅱ is the retrograde alteration stage(epidote + chlorite + magnetite ± hematite 士 actinolite ± quartz),Stage Ⅲ is the sulfide stage(Ag and Bi minerals + pyrite + chalcopyrite + galena + sphalerite + quartz ± calcite ± tetrahedrite),and Stage IV is the carbonate stage(quartz + calcite ± pyrite). Skarnization,silicification, carbonatization,epidotization,chloritization, sericitization, and actinolitization are the principal types of hydrothermal alteration. LAICP-MS U-Pb dating yielded ages of 326.5±4.5 and 298.5±1.5 Ma for zircons from the tuff and diorite porphyry, respectively. Given that the tuff is wall rock and that the orebodies are cut by a late diorite porphyry dike, the ages of the tuff and the diorite porphyry provide lower and upper time limits on the age of ore formation. The δ13C values of the calcite samples range from-2.5‰ to 2.3‰, the δ18OH2 Oand δDVSMOWvalues of the sulfide stage(Stage Ⅲ) vary from 1.1‰ to 5.2‰ and-111.7‰ to-66.1‰, respectively,and the δ13C, δ18OH2 Oand δDV-SMOWvalues of calcite in one Stage IV sample are 1.5‰,-0.3‰, and-115.6‰, respectively. Carbon, hydrogen, and oxygen isotopic compositions indicate that the ore-forming fluids evolved gradually from magmatic to meteoric sources. The δ34SV-CDTvalues of the sulfides have a large range from-6.9‰ to 1.4‰, with an average of-2.2‰, indicating a magmatic source, possibly with sedimentary contributions. The206Pb/204Pb,207Pb/204Pb, and208Pb/204Pb ratios of the sulfides are 17.9848-18.2785,15.5188-15.6536, and 37.8125-38.4650, respectively, and one whole-rock sample at Weiquan yields206Pb/204Pb,207Pb/204Pb, and208Pb/204Pb ratios of 18.2060, 15.5674, and 38.0511,respectively. Lead isotopic systems suggest that the ore-forming materials of the Weiquan deposit were derived from a mixed source involving mantle and crustal components. Based on geological features, zircon U-Pb dating, and C-H-OS-Pb isotopic data, it can be concluded that the Weiquan polymetallic deposit is a skarn type that formed in a tectonic setting spanning a period from subduction to post-collision. The ore materials were sourced from magmatic ore-forming fluids that mixed with components derived from host rocks during their ascent, and a gradual mixing with meteoric water took place in the later stages.
基金supported by Science Foundation of Guizhou province (No. 2012-2334)Open Foundation of State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (Nos. 2011001 and 2009014)National Natural Science Foundation of China (Nos. 41102055 and 41102053)
文摘The Nage Cu-Pb deposit, a new found ore deposit in the southeast Guizhou province, southwest China, is located on the southwestern margin of the Jiangnan Orogenic Belt. Ore bodies are hosted in slate and phyllite of Neoproterozoic Jialu and Wuye Formations, and are structurally controlled by EW-trending fault. It contains Cu and Pb metals about 0.12 million tonnes with grades of 0.2 wt% to 3.4 wt% Cu and 1.1 wt% to 9.27 wt% Pb. Massive and disseminated Cu-Pb ores from the Nage deposit occur as either veinlets or disseminations in silicified rocks. The ore minerals include chalcopyrite, galena and pyrite, and gangue minerals are quartz, sericite and chlorite. The H-O isotopic compositions of quartz, S-Cu-Pb isotopic compositions of sulfide minerals, Pb isotopic compositions of whole rocks and ores have been analyzed to trace the sources of ore-forming fluids and metals for the Nage Cu-Pb deposit. The oSCUNBs values of chalcopyrite range from -0.09% to +0.33%0, similar to basic igneous rocks and chalcopyrite from magmatic deposits. J6SCUNBS values of chalcopyrite from the early, middle and final mineralization stages show an increasing trend due to 63Cu prior migrated in gas phase when fluids exsolution from magma, ja4ScDT values of sulfide minerals range from -2.7‰ to +2.8‰, similar to mantle-derived sulfur (0±3‰). The positive correlation between J65CUNBs and ja4SCDT values of chalcopyrite indicates that a common source of copper metal and sulfur from magma. JDu2o- SMOW and JlSOH2O-SMOW values of water in fluid inclusions of quartz range from -60.7‰ to -44.4‰ and +7.9‰ to +9.0%0 (T=260℃), respectively and fall in the field for magmatic and metamorphic waters, implicating that mixed sources for H20 in hydrothermal fluids. Ores and sulfide minerals have a small range of Pb isotopic compositions (208Pb/204pb=38.152 to 38.384, 207Pb/204Pb=15.656 to 17.708 and 206Pb/204Pb=17.991 to 18.049) that are close to orogenic belt and upper crust Pb evolution curve, and similar to Neoproterozoic host rocks (208Pb/204Pb=38.201 to 38.6373, 207pb/204pb=15.648 to 15.673 and 206pb/204pb=17.820 to 18.258), but higher than diabase (208Pb/204pb=37.830 to 38.012, 207pb/204pb=15.620 to 15.635 and 206pb/204pb=17.808 to 17.902). These results imply that the Pb metal originated mainly from host rocks. The H-O-S-Cu-Pb isotopes tegather with geology, indicating that the ore genesis of the Nage Cu-Pb deposit is post-magmatic hydrothermal type.
基金financially supported by the National Key R&D Program of China(2017YFC0601201-2)funds from the Chinese Ministry of Land and Resources for public welfare industry research(201411026-1)the Chinese Geological Survey Project(DD20160071)
文摘The Hongshi copper deposit is located in the middle of the Kalatage ore district in the northern segment of the Dananhu-Tousuquan island-arc belt in East Tianshan, Xinjiang, NW China. This study analyses the fluid inclusions and H, O, and S stable isotopic compositions of the deposit. The fluid-inclusion data indicate that aqueous fluid inclusions were trapped in chalcopyrite-bearing quartz veins in the gangue minerals. The homogenization temperatures range from 108°C to 299°C, and the salinities range from 0.5% to 11.8%, indicating medium to low temperatures and salinities. The trapping pressures range from 34.5 MPa to 56.8 MPa. The δ^(18)O_(H_2O) values and δD values of the fluid range from -6.94‰ to -5.33‰ and from -95.31‰ to -48.20‰, respectively. The H and O isotopic data indicate that the ore-forming fluid derived from a mix of magmatic water and meteoric water and that meteoric water played a significant role. The S isotopic composition of pyrite ranges from 1.9‰ to 5.2‰, with an average value of 3.1‰, and the S isotopic composition of chalcopyrite ranges from -0.9‰ to 4‰, with an average value of 1.36‰, implying that the S in the ore-forming materials was derived from the mantle. The introduction of meteoric water decreased the temperature, volatile content, and pressure, resulting in immiscibility. These factors may have been the major causes of the mineralization of the Hongshi copper deposit. Based on all the geologic and fluid characteristics, we conclude that the Hongshi copper deposit is an epithermal deposit.
文摘This paper focuses on the effect of the later hydrotherm on uraniferous leucogranites and the stages of uranium mineralization. Here, we review C-H-O stable isotope, elements and fluid geochemistry of uraniferous leucogranites in Gaudeanmus, Namibia. The results show that there is significant increasing amount of rare earth element from non-mineralized to uraniferous leucogra-nites, indicating the synchronization of REE enrichment and uranium mineralization. Uranium enrichment may have close relations with Pb, Th, Co, Ni, REE in this region, so REE and U evidently exist homology. There are at least two stages of uranium mineralization by later hydrothermal alteration: firstly, due to magnatic residual high temperature and low salinity fluid, the temperature of main metallogenetic epoch ranges from 470°C to 530°C, salinity ranges from 3.55% to 9.60% NaCleq, and C, H, O stable isotope is -23‰ - -13.6‰, -53.3‰ - -46.4‰, 7.71‰ - 8.81‰, respectively. Secondly, due to superim-posed hydrothermal fluid, the temperature, salinity, and C, H, O stable isotope is 150°C - 220°C, 4.65% - 19.05% NaCleq, -20.3‰ -?-3.7‰, -64.7‰ - -53.6‰, 1.49‰ - 1.99‰, respectively. The fluid for reformation is derived from postmagmatic fluid, mixed with a number of meteoric water.
文摘A novel pulse 18O-16O isotopic exchange (PIE) technique for measurement of the rate of oxygen surface exchange of oxide ion conductors was presented. The technique employs a continuous flow packed-bed micro-reactor loaded with the oxide powder. The isothermal response to an 18O-enriched pulse passing through the reactor, thereby maintaining chemical equilibrium, is measured by on-line mass spectrometry. Evaluation of the apparent exchange rate follows from the uptake of 18O by the oxide at given reactor residence time and surface area available for exchange. The developed PIE technique is rapid, simple and highly suitable for screening and systematic studies. No rapid heating/quenching steps are required to facilitate 18O tracer anneal or analysis, as in other commonly used techniques based upon oxygen isotopic exchange. Moreover, the relative distribution of the oxygen isotopologues 18O2, 16O18O, and 16O2 in the effluent pulse provides insight into the mechanism of the oxygen exchange reaction. The PIE technique has been demonstrated by measuring the exchange rate of selected oxides with enhanced oxide ionic conductivity in the range of 350?900 oC. Analysis of the experimental data in terms of a model with two consecutive, lumped steps for the isotopic exchange reaction shows that for mixed conductors Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF) and La2NiO4+δ the reaction is limited by the apparent rate of dissociative adsorption of O2 molecules at the oxide surface. For yttria-stabilized zirconia (YSZ), a change-over takes place, from rate-limitations by oxygen incorporation below ∽800 oC to rate-limitations by O2 dissociative adsorption above this temperature. Good agreement is obtained with exchange rates reported for these materials in literature.
基金This study was supported by National Natural Science Foundation of China(grants 4022 1301 and 40132010).
文摘The Luxi-Xianrenzhang diabase dikes were emplaced into the eastern part of the Guidong composite granitoids in northern Guangdong Province at the end of the Early Cretaceous. They show tholeiitic features, enrichment in large ion lithophile elements, slight enrichment in light rare earth elements, depletion in Zr and Hf, and basically no depletion in Nb and Ta and no Eu anomaly. They are similar to intraplate basalt in terms of trace element characteristics. They have high εNd(t) values (3.6-4.9), initial ^87Sr/^86Sr ratios (0.70530-70641) and δ^18O values and Dupal anomaly of Pb isotope compositions. Their Sr-Nd, Pb-Sr, Pb-Nd and Pb-Pb isotopes plot between DMM and EMII, with Pb similar to EMII, Nd relatively close to DMM and Sr in between. This profile suggests that the diabase dikes studied were derived from partial melting of a mantle source that had been subjected to metasomatism by fluids originated from a subduction zone under a tectonic environment of crustal extension and lithosphere thinning in the late Yanshanian.