In this article, several weak Hardy spaces of Banach-space-valued martingales are introduced, some atomic decomposition theorems for them are established and their duals are investigated. The results closely depend on...In this article, several weak Hardy spaces of Banach-space-valued martingales are introduced, some atomic decomposition theorems for them are established and their duals are investigated. The results closely depend on the geometrical properties of the Banach space in which the martingales take values.展开更多
The atomic decompositions of weak Hardy spaces of Banach-space-valued martingales are given. With the help of the atomic decompositions, some inequalities for B-valued martingales are established in the case 0〈r≤1. ...The atomic decompositions of weak Hardy spaces of Banach-space-valued martingales are given. With the help of the atomic decompositions, some inequalities for B-valued martingales are established in the case 0〈r≤1. Here the results are connected closely with the p-uniform smoothness and q-uniform convexity of Banach spaces which the martingales take values in.展开更多
In this article, we establish some atomic decomposition theorems for martin- gale Hardy-Lorentz spaces. As applications, with the help of weak atomic decompositions, some interpolation theorems for martingale Hardy-Lo...In this article, we establish some atomic decomposition theorems for martin- gale Hardy-Lorentz spaces. As applications, with the help of weak atomic decompositions, some interpolation theorems for martingale Hardy-Lorentz spaces are proved.展开更多
In this article,atomic decompositions and the duals of some B-valued r.v.se- quence spaces are investigated.The results show that it closely depends on the geometrical properties of the sequence that take values in.
In this article,atomic decompositions and the duals of some B-valued r.v.se- quence spaces are investigated.The results show that it closely depends on the geometrical properties of the sequence that take values in.
In this paper, the general Marcinkiewicz integral operator μ Ω,α on the H p Sobolev spaces under the proper condition of kernel Ω(x′) is considered. It is obtained that μ Ω,α is bounded from H p ...In this paper, the general Marcinkiewicz integral operator μ Ω,α on the H p Sobolev spaces under the proper condition of kernel Ω(x′) is considered. It is obtained that μ Ω,α is bounded from H p α to L p for some 0<p≤1.展开更多
Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting...Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting has been established only by almost orthogonality estimates.In this paper,we mainly establish the boundedness on weighted multi-parameter local Hardy spaces via atomic decomposition.展开更多
In this paper we define some weak martingale Hardy spaces and three kinds of weak atoms. They are the counterparts of martingale Hardy spaces and atoms in the classical martingale Hp-theory. And then three atomic deco...In this paper we define some weak martingale Hardy spaces and three kinds of weak atoms. They are the counterparts of martingale Hardy spaces and atoms in the classical martingale Hp-theory. And then three atomic decomposition theorems for martingales in weak martingale Hardy spaces are proved. With the help of the weak atomic decompositions of martingale, a sufficient condition for a sublinear operator defined on the weak martingale Hardy spaces to be bounded is given. Using the sufficient condition, we obtain a series of martingale inequalities with respect to the weak Lp-norm, the inequalities of weak (p ,p)-type and some continuous imbedding relationships between various weak martingale Hardy spaces. These inequalities are the weak versions of the basic inequalities in the classical martingale Hp-theory.展开更多
Several theorems for atomic decompositions of Banach-space-valued martingales are proved. As their applications, the relationship among some martingale spaces such asH α(X) andρ H α in the case 0< α? are studie...Several theorems for atomic decompositions of Banach-space-valued martingales are proved. As their applications, the relationship among some martingale spaces such asH α(X) andρ H α in the case 0< α? are studied. It is shown that there is a close connection between the results and the smoothness and convexity of the value spaces.展开更多
Some atomic decomposition theorems for Banach-space-valued martingales are established. Using them, the embedding relationships between martingale spaces with small index are discussed. The results obtained here are c...Some atomic decomposition theorems for Banach-space-valued martingales are established. Using them, the embedding relationships between martingale spaces with small index are discussed. The results obtained here are connected closely with the p-uniform smoothness and q-uniform convexity of Banach space in which the martingales take values.展开更多
The main purpose of this paper is to derive a new (p,q)-atomic decomposition on the multi-parameter Hardy space HP(X1 × X2) for 0 〈 po 〈 P ≤ 1 for some po and all 1 〈 q 〈 ∞, where X1 ×X2 is the pro...The main purpose of this paper is to derive a new (p,q)-atomic decomposition on the multi-parameter Hardy space HP(X1 × X2) for 0 〈 po 〈 P ≤ 1 for some po and all 1 〈 q 〈 ∞, where X1 ×X2 is the product of two spaces of homogeneous type in the sense of Coifman and Weiss. This decomposition converges in both L^q(X1 × X2) (for 1 〈 q 〈 ∞) and Hardy space HP(X1× X2) (for 0 〈 p _〈 1). As an application, we prove that an operator T, which is bounded on Lq(X1× X2) for some 1 〈 q 〈 ∞, is bounded from H^p(X1 × X2) to L^p(X1 × X2) if and only if T is bounded uniformly on all (p, q)-product atoms in LP(X1 × X2). The similar boundedness criterion from HP(X1 × X2) to HP(X1 × X2) is also obtained.展开更多
Let w E Am. In this paper, we introduce weighted-(p,q) atomicHardy spaces Hwp,q(Rn × Rm) for 0 〈 p ≤ 1, q 〉 qw and show that the weighted Hardy space Hwp(Rn × Rm) defined via Littlewood-Paley square...Let w E Am. In this paper, we introduce weighted-(p,q) atomicHardy spaces Hwp,q(Rn × Rm) for 0 〈 p ≤ 1, q 〉 qw and show that the weighted Hardy space Hwp(Rn × Rm) defined via Littlewood-Paley square functions coincides with Hwp,q(Rn × Rm) for 0 〈 p ≤ 1, q 〉 qw. As applications, we get a general principle on the Hwp(Rn × Rm to Lwp(Rn × Rm) boundedness and a boundedness criterion for two parameter singular integrals on the weighted Hardy spaces.展开更多
We introduce the weak Hardy-Morrey spaces in this paper.We also obtain the atomic decompositions of the weak Hardy-Morrey spaces.By using these decompositions,we establish the Hardy inequalities on the weak Hardy-Morr...We introduce the weak Hardy-Morrey spaces in this paper.We also obtain the atomic decompositions of the weak Hardy-Morrey spaces.By using these decompositions,we establish the Hardy inequalities on the weak Hardy-Morrey spaces.展开更多
In 2011,Dekel et al.developed highly geometric Hardy spaces H^(p)(Θ),for the full range 0<p≤1,which are constructed by continuous multi-level ellipsoid coverΘof R^(n) with high anisotropy in the sense that the e...In 2011,Dekel et al.developed highly geometric Hardy spaces H^(p)(Θ),for the full range 0<p≤1,which are constructed by continuous multi-level ellipsoid coverΘof R^(n) with high anisotropy in the sense that the ellipsoids can change shape rapidly from point to point and from level to level.The authors obtain the finite atomic decomposition characterization of Hardy spaces H^(p)(Θ)and as an application,the authors prove that given an admissible triplet(p,q,l)with 1≤q≤∞,if T is a sublinear operator and uniformly bounded elements of some quasi-Banach space B for maps all(p,q,l)-atoms with q<∞(or all continuous(p,q,l)-atoms with q=∞),then T uniquely extends to a bounded sublinear operator from H^(p)(Θ)to B.These results generalize the known results on the anisotropic Hardy spaces of Bownik et al.展开更多
We study Hausdorff operators on the product Besov space B0,1 1 (Rn ×Rm) and on the local product Hardy space h1 (Rn ×Rm). We establish some boundedness criteria for Hausdorff operators on these function ...We study Hausdorff operators on the product Besov space B0,1 1 (Rn ×Rm) and on the local product Hardy space h1 (Rn ×Rm). We establish some boundedness criteria for Hausdorff operators on these function spaces.展开更多
基金Supported by the National Natural Foundation of China(10671147)
文摘In this article, several weak Hardy spaces of Banach-space-valued martingales are introduced, some atomic decomposition theorems for them are established and their duals are investigated. The results closely depend on the geometrical properties of the Banach space in which the martingales take values.
基金supported by the Education Department Important Foundation of Hunan Province in China(10A074)supported by the Education Department Important Foundation of Hunan Provincein China(12A206)College of Mathematics and Computer Science,Key Laboratory of High Performance Computing and Stochastic Information Processing(Ministry of Education of China),Hunan Normal University,and the Construct Program of the Key Discipline in Hunan Province
文摘Let μ be a normal function on [0, 1). The atomic decomposition of the μ-Bergman space in the unit ball B is given for all p 〉 0.
基金Supported by the National Natural Science Foun-dation of China (10371093)
文摘The atomic decompositions of weak Hardy spaces of Banach-space-valued martingales are given. With the help of the atomic decompositions, some inequalities for B-valued martingales are established in the case 0〈r≤1. Here the results are connected closely with the p-uniform smoothness and q-uniform convexity of Banach spaces which the martingales take values in.
基金supported by the National Natural Science Foundation of China(10871016)
文摘In this article, we establish some atomic decomposition theorems for martin- gale Hardy-Lorentz spaces. As applications, with the help of weak atomic decompositions, some interpolation theorems for martingale Hardy-Lorentz spaces are proved.
基金Sponsored by the National NSFC under grant No.19771063
文摘In this article,atomic decompositions and the duals of some B-valued r.v.se- quence spaces are investigated.The results show that it closely depends on the geometrical properties of the sequence that take values in.
基金Sponsored by the National NSFC under grant No.19771063
文摘In this article,atomic decompositions and the duals of some B-valued r.v.se- quence spaces are investigated.The results show that it closely depends on the geometrical properties of the sequence that take values in.
基金Jiang and Jia were supported in part by Education Departmentof Zhejiang province
文摘In this paper, the general Marcinkiewicz integral operator μ Ω,α on the H p Sobolev spaces under the proper condition of kernel Ω(x′) is considered. It is obtained that μ Ω,α is bounded from H p α to L p for some 0<p≤1.
文摘Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting has been established only by almost orthogonality estimates.In this paper,we mainly establish the boundedness on weighted multi-parameter local Hardy spaces via atomic decomposition.
基金This work was supported by National Natural Science Foundation of China (Grant No. 10371093).
文摘In this paper we define some weak martingale Hardy spaces and three kinds of weak atoms. They are the counterparts of martingale Hardy spaces and atoms in the classical martingale Hp-theory. And then three atomic decomposition theorems for martingales in weak martingale Hardy spaces are proved. With the help of the weak atomic decompositions of martingale, a sufficient condition for a sublinear operator defined on the weak martingale Hardy spaces to be bounded is given. Using the sufficient condition, we obtain a series of martingale inequalities with respect to the weak Lp-norm, the inequalities of weak (p ,p)-type and some continuous imbedding relationships between various weak martingale Hardy spaces. These inequalities are the weak versions of the basic inequalities in the classical martingale Hp-theory.
基金Project supported by the National Natural Science Foundation of China (Grant No. 19771063).
文摘Several theorems for atomic decompositions of Banach-space-valued martingales are proved. As their applications, the relationship among some martingale spaces such asH α(X) andρ H α in the case 0< α? are studied. It is shown that there is a close connection between the results and the smoothness and convexity of the value spaces.
基金the National Natural Science Foundation of China (Grant No. 10071059) .
文摘Some atomic decomposition theorems for Banach-space-valued martingales are established. Using them, the embedding relationships between martingale spaces with small index are discussed. The results obtained here are connected closely with the p-uniform smoothness and q-uniform convexity of Banach space in which the martingales take values.
文摘The main purpose of this paper is to derive a new (p,q)-atomic decomposition on the multi-parameter Hardy space HP(X1 × X2) for 0 〈 po 〈 P ≤ 1 for some po and all 1 〈 q 〈 ∞, where X1 ×X2 is the product of two spaces of homogeneous type in the sense of Coifman and Weiss. This decomposition converges in both L^q(X1 × X2) (for 1 〈 q 〈 ∞) and Hardy space HP(X1× X2) (for 0 〈 p _〈 1). As an application, we prove that an operator T, which is bounded on Lq(X1× X2) for some 1 〈 q 〈 ∞, is bounded from H^p(X1 × X2) to L^p(X1 × X2) if and only if T is bounded uniformly on all (p, q)-product atoms in LP(X1 × X2). The similar boundedness criterion from HP(X1 × X2) to HP(X1 × X2) is also obtained.
文摘Let w E Am. In this paper, we introduce weighted-(p,q) atomicHardy spaces Hwp,q(Rn × Rm) for 0 〈 p ≤ 1, q 〉 qw and show that the weighted Hardy space Hwp(Rn × Rm) defined via Littlewood-Paley square functions coincides with Hwp,q(Rn × Rm) for 0 〈 p ≤ 1, q 〉 qw. As applications, we get a general principle on the Hwp(Rn × Rm to Lwp(Rn × Rm) boundedness and a boundedness criterion for two parameter singular integrals on the weighted Hardy spaces.
文摘We introduce the weak Hardy-Morrey spaces in this paper.We also obtain the atomic decompositions of the weak Hardy-Morrey spaces.By using these decompositions,we establish the Hardy inequalities on the weak Hardy-Morrey spaces.
基金Supported by the Xinjiang Training of Innovative Personnel Natural Science Foundation of China(Grant No.2020D01C048)the National Natural Science Foundation of China(Grant No.11861062)。
文摘In 2011,Dekel et al.developed highly geometric Hardy spaces H^(p)(Θ),for the full range 0<p≤1,which are constructed by continuous multi-level ellipsoid coverΘof R^(n) with high anisotropy in the sense that the ellipsoids can change shape rapidly from point to point and from level to level.The authors obtain the finite atomic decomposition characterization of Hardy spaces H^(p)(Θ)and as an application,the authors prove that given an admissible triplet(p,q,l)with 1≤q≤∞,if T is a sublinear operator and uniformly bounded elements of some quasi-Banach space B for maps all(p,q,l)-atoms with q<∞(or all continuous(p,q,l)-atoms with q=∞),then T uniquely extends to a bounded sublinear operator from H^(p)(Θ)to B.These results generalize the known results on the anisotropic Hardy spaces of Bownik et al.
文摘The paper is given the interpolation of operators between weighted Hardy spaces and weighted L p spaces when w∈A 1 by Calderon Zygmund decomposition.
基金Supported by the National Natural Science Foundation of China(10931001, 10871173 and 11026104)
文摘We study Hausdorff operators on the product Besov space B0,1 1 (Rn ×Rm) and on the local product Hardy space h1 (Rn ×Rm). We establish some boundedness criteria for Hausdorff operators on these function spaces.