In this paper,we investigate the strong Feller property of stochastic differential equations(SDEs)with super-linear drift and Hölder diffusion coefficients.By utilizing the Girsanov theorem,coupling method,trunca...In this paper,we investigate the strong Feller property of stochastic differential equations(SDEs)with super-linear drift and Hölder diffusion coefficients.By utilizing the Girsanov theorem,coupling method,truncation method and the Yamada-Watanabe approximation technique,we derived the strong Feller property of the solution.展开更多
This article gives a general model using specific periodic special functions, which is degenerate elliptic Weierstrass P functions whose presence in the governing equations through the forcing terms simplify the perio...This article gives a general model using specific periodic special functions, which is degenerate elliptic Weierstrass P functions whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of cells of the 3-Torus. Satisfying a divergence-free vector field and periodic boundary conditions respectively with a general spatio-temporal forcing term which is smooth and spatially periodic, the existence of solutions which have finite time singularities can occur starting with the first derivative and higher with respect to time. The existence of a subspace of the solution space where v<sub>3</sub> is continuous and {C, y<sub>1</sub>, y<sub>1</sub><sup>2</sup>}, is linearly independent in the additive argument of the solution in terms of the Lambert W function, (y<sub>1</sub><sup>2</sup>=y<sub>2</sub>, C∈R) together with the condition v<sub>2</sub>=-2y<sub>1</sub>v<sub>1</sub>. On this subspace, the Biot Savart Law holds exactly [see Section 2 (Equation (13))]. Also on this subspace, an expression X (part of PNS equations) vanishes which contains all the expressions in derivatives of v<sub>1</sub> and v<sub>2</sub> and the forcing terms in the plane which are related as with the cancellation of all such terms in governing PDE. The y<sub>3</sub> component forcing term is arbitrarily small in ε ball where Weierstrass P functions touch the center of the ball both for inviscid and viscous cases. As a result, a significant simplification occurs with a v<sub>3 </sub>only governing PDE resulting. With viscosity present as v changes from zero to the fully viscous case at v =1 the solution for v<sub>3</sub> reaches a peak in the third component y<sub>3</sub>. Consequently, there exists a dipole which is not centered at the center of the cell of the Lattice. Hence since the dipole by definition has an equal in magnitude positive and negative peak in y<sub>3</sub>, then the dipole Riemann cut-off surface is covered by a closed surface which is the sphere and where a given cell of dimensions [-1, 1]<sup>3</sup> is circumscribed on a sphere of radius 1. For such a closed surface containing a dipole it necessarily follows that the flux at the surface of the sphere of v<sub>3</sub> wrt to surface normal n is zero including at the points where the surface of sphere touches the cube walls. At the finite time singularity on the sphere a rotation boundary condition is deduced. It is shown that v<sub>3</sub> is spatially finite on the Riemann Sphere and the forcing is oscillatory in y<sub>3</sub> component if the velocity v3</sub> is. It is true that . A boundary condition on the sphere shows the rotation of a sphere of viscous fluid. Finally on the sphere a solution for v3</sub> is obtained which is proven to be Hölder continuous and it is shown that it is possible to extend Hölder continuity on the sphere uniquely to all of the interior of the ball.展开更多
This article gives a general model using specific periodic special functions, that is, degenerate elliptic Weierstrass P functions composed with the LambertW function, whose presence in the governing equations through...This article gives a general model using specific periodic special functions, that is, degenerate elliptic Weierstrass P functions composed with the LambertW function, whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of arbitrary r balls of the 3-Torus. The continuity equation is satisfied together with spatially periodic boundary conditions. The yicomponent forcing terms consist of a function F as part of its expression that is arbitrarily small in an r ball where it is associated with a singular forcing expression both for inviscid and viscous cases. As a result, a significant simplification occurs with a v3(vifor all velocity components) only governing PDE resulting. The extension of three restricted subspaces in each of the principal directions in the Cartesian plane is shown as the Cartesian product ℋ=Jx,t×Jy,t×Jz,t. On each of these subspaces vi,i=1,2,3is continuous and there exists a linear independent subspace associated with the argument of the W function. Here the 3-Torus is built up from each compact segment of length 2R on each of the axes on the 3 principal directions x, y, and z. The form of the scaled velocities for non zero scaled δis related to the definition of the W function such that e−W(ξ)=W(ξ)ξwhere ξdepends on t and proportional to δ→0for infinite time t. The ratio Wξis equal to 1, making the limit δ→0finite and well defined. Considering r balls where the function F=(x−ai)2+(y−bi)2+(z−ci)2−ηset equal to −1e+rwhere r>0. is such that the forcing is singular at every distance r of centres of cubes each containing an r-ball. At the centre of the balls, the forcing is infinite. The main idea is that a system of singular initial value problems with infinite forcing is to be solved for where the velocities are shown to be locally Hölder continuous. It is proven that the limit of these singular problems shifts the finite time blowup time ti∗for first and higher derivatives to t=∞thereby indicating that there is no finite time blowup. Results in the literature can provide a systematic approach to study both large space and time behaviour for singular solutions to the Navier Stokes equations. Among the references, it has been shown that mathematical tools can be applied to study the asymptotic properties of solutions.展开更多
1引言Hölder不等式是非常重要的不等式,本文首先给出Hölder不等式的一个等价形式,然后利用函数的凸性给出了Hölder不等式的一种新的证明方法,并据此结合受控理论(theory of majorization)给出Cauchy-Schwarz不等式的一...1引言Hölder不等式是非常重要的不等式,本文首先给出Hölder不等式的一个等价形式,然后利用函数的凸性给出了Hölder不等式的一种新的证明方法,并据此结合受控理论(theory of majorization)给出Cauchy-Schwarz不等式的一种加细及一个新的反向Hölder不等式.我们需要一些简单的符号和高等数学知识.展开更多
In this paper, we introduce and study the notion of HB-closed sets in L-topological space. Then, HB-convergence theory for L-molecular nets and L-ideals is established in terms of HB-closedness. Finally, we give a new...In this paper, we introduce and study the notion of HB-closed sets in L-topological space. Then, HB-convergence theory for L-molecular nets and L-ideals is established in terms of HB-closedness. Finally, we give a new definition of fuzzy H-continuous [1] which is called HB-continuity on the basis of the notion of H-bounded L-subsets in L-topological space. Then we give characterizations and properties by making use of HB-converges theory of L-molecular nets and L-ideals.展开更多
New numerical methods based on collocation methods with the mechanical quadrature rules are proposed to solve some systems of singular integrodifferential equations that are defined on arbitrary smooth closed contours...New numerical methods based on collocation methods with the mechanical quadrature rules are proposed to solve some systems of singular integrodifferential equations that are defined on arbitrary smooth closed contours of the complex plane.We carry out the convergence analysis in classical Hölder spaces.A numerical example is also presented.展开更多
In the present paper, we discuss the solution of Euler-Darboux equation in terms of Dirichlet averages of boundary conditions on H?lder space and weighted H?lder spaces of continuous functions using Riemann-Liouville ...In the present paper, we discuss the solution of Euler-Darboux equation in terms of Dirichlet averages of boundary conditions on H?lder space and weighted H?lder spaces of continuous functions using Riemann-Liouville fractional integral operators. Moreover, the results are interpreted in alternative form.展开更多
In this paper, we introduce a K Hölder p-adic derivative that can be applied to fractal curves with different Hölder exponent K. We will show that the Koch curve satisfies the Hölder conditi...In this paper, we introduce a K Hölder p-adic derivative that can be applied to fractal curves with different Hölder exponent K. We will show that the Koch curve satisfies the Hölder condition with exponent and has a 4-adic arithmetic-analytic representation. We will prove that the Koch curve has exact -Hölder 4-adic derivative.展开更多
Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted...Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted Kato square root problem for L.More precisely,we prove that the square root L^(1/2)satisfies the weighted L^(p)estimates||L^(1/2)(f)||L_(ω)^p(R^(n))≤C||■f||L_(ω)^p(R^(n);R^(n))for any p∈(1,∞)andω∈Ap(ℝ^(n))(the class of Muckenhoupt weights),and that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,2+ε)andω∈Ap(ℝ^(n))∩RH_(2+ε/p),(R^(n))(the class of reverse Hölder weights),whereε∈(0,∞)is a constant depending only on n and the operator L,and where(2+ε/p)'denotes the Hölder conjugate exponent of 2+ε/p.Moreover,for any given q∈(2,∞),we give a sufficient condition to obtain that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,q)andω∈A_(p)(R^(n))∩pRH_(q/p),(R^(n)).As an application,we prove that when the coefficient matrix A that appears in L satisfies the small BMO condition,the Riesz transform∇L^(−1/2)is bounded on L_(ω)^(p)(ℝ^(n))for any given p∈(1,∞)andω∈Ap(ℝ^(n)).Furthermore,applications to the weighted L^(2)-regularity problem with the Dirichlet or the Neumann boundary condition are also given.展开更多
For the step-weight function , we prove that the Holder spaces ∧a,p on the interval [-1,1], defined in terms of moduli of smoothness with the step-weight function ,are linearly isomorphic to some sequence spaces, an...For the step-weight function , we prove that the Holder spaces ∧a,p on the interval [-1,1], defined in terms of moduli of smoothness with the step-weight function ,are linearly isomorphic to some sequence spaces, and the isomorphism is given by the cofficients of function with respect to a system of orthonormal splines with knots uniformly distributed according to the measure with density . In case ∧a,p is contained in the space of continuous functions, we give a discrete characterization of this space, using only values of function at the appropriate knots. Application of these results to characterize the order of polynomial approximation is presented.展开更多
A complementarity hypothesis concerning outsider and insider perspectives of a gargantuan black hole is proposed. The two thought experiments presented herein are followed by a brief discussion of a new interpretation...A complementarity hypothesis concerning outsider and insider perspectives of a gargantuan black hole is proposed. The two thought experiments presented herein are followed by a brief discussion of a new interpretation of black hole interior “space-and-time-reversal”. Specifically, it is proposed that the “singularity” space of the black hole interior is time-like and the expansion time of the black hole interior is space-like. The resemblance of this new insider interpretation to our own expanding and redshifting big bang universe is compelling.展开更多
基金Supported by the National Natural Science Foundation of China(11926322)the Fundamental Research Funds for the Central Universities of South-Central MinZu University(CZY22013,3212023sycxjj001)。
文摘In this paper,we investigate the strong Feller property of stochastic differential equations(SDEs)with super-linear drift and Hölder diffusion coefficients.By utilizing the Girsanov theorem,coupling method,truncation method and the Yamada-Watanabe approximation technique,we derived the strong Feller property of the solution.
文摘This article gives a general model using specific periodic special functions, which is degenerate elliptic Weierstrass P functions whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of cells of the 3-Torus. Satisfying a divergence-free vector field and periodic boundary conditions respectively with a general spatio-temporal forcing term which is smooth and spatially periodic, the existence of solutions which have finite time singularities can occur starting with the first derivative and higher with respect to time. The existence of a subspace of the solution space where v<sub>3</sub> is continuous and {C, y<sub>1</sub>, y<sub>1</sub><sup>2</sup>}, is linearly independent in the additive argument of the solution in terms of the Lambert W function, (y<sub>1</sub><sup>2</sup>=y<sub>2</sub>, C∈R) together with the condition v<sub>2</sub>=-2y<sub>1</sub>v<sub>1</sub>. On this subspace, the Biot Savart Law holds exactly [see Section 2 (Equation (13))]. Also on this subspace, an expression X (part of PNS equations) vanishes which contains all the expressions in derivatives of v<sub>1</sub> and v<sub>2</sub> and the forcing terms in the plane which are related as with the cancellation of all such terms in governing PDE. The y<sub>3</sub> component forcing term is arbitrarily small in ε ball where Weierstrass P functions touch the center of the ball both for inviscid and viscous cases. As a result, a significant simplification occurs with a v<sub>3 </sub>only governing PDE resulting. With viscosity present as v changes from zero to the fully viscous case at v =1 the solution for v<sub>3</sub> reaches a peak in the third component y<sub>3</sub>. Consequently, there exists a dipole which is not centered at the center of the cell of the Lattice. Hence since the dipole by definition has an equal in magnitude positive and negative peak in y<sub>3</sub>, then the dipole Riemann cut-off surface is covered by a closed surface which is the sphere and where a given cell of dimensions [-1, 1]<sup>3</sup> is circumscribed on a sphere of radius 1. For such a closed surface containing a dipole it necessarily follows that the flux at the surface of the sphere of v<sub>3</sub> wrt to surface normal n is zero including at the points where the surface of sphere touches the cube walls. At the finite time singularity on the sphere a rotation boundary condition is deduced. It is shown that v<sub>3</sub> is spatially finite on the Riemann Sphere and the forcing is oscillatory in y<sub>3</sub> component if the velocity v3</sub> is. It is true that . A boundary condition on the sphere shows the rotation of a sphere of viscous fluid. Finally on the sphere a solution for v3</sub> is obtained which is proven to be Hölder continuous and it is shown that it is possible to extend Hölder continuity on the sphere uniquely to all of the interior of the ball.
文摘This article gives a general model using specific periodic special functions, that is, degenerate elliptic Weierstrass P functions composed with the LambertW function, whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of arbitrary r balls of the 3-Torus. The continuity equation is satisfied together with spatially periodic boundary conditions. The yicomponent forcing terms consist of a function F as part of its expression that is arbitrarily small in an r ball where it is associated with a singular forcing expression both for inviscid and viscous cases. As a result, a significant simplification occurs with a v3(vifor all velocity components) only governing PDE resulting. The extension of three restricted subspaces in each of the principal directions in the Cartesian plane is shown as the Cartesian product ℋ=Jx,t×Jy,t×Jz,t. On each of these subspaces vi,i=1,2,3is continuous and there exists a linear independent subspace associated with the argument of the W function. Here the 3-Torus is built up from each compact segment of length 2R on each of the axes on the 3 principal directions x, y, and z. The form of the scaled velocities for non zero scaled δis related to the definition of the W function such that e−W(ξ)=W(ξ)ξwhere ξdepends on t and proportional to δ→0for infinite time t. The ratio Wξis equal to 1, making the limit δ→0finite and well defined. Considering r balls where the function F=(x−ai)2+(y−bi)2+(z−ci)2−ηset equal to −1e+rwhere r>0. is such that the forcing is singular at every distance r of centres of cubes each containing an r-ball. At the centre of the balls, the forcing is infinite. The main idea is that a system of singular initial value problems with infinite forcing is to be solved for where the velocities are shown to be locally Hölder continuous. It is proven that the limit of these singular problems shifts the finite time blowup time ti∗for first and higher derivatives to t=∞thereby indicating that there is no finite time blowup. Results in the literature can provide a systematic approach to study both large space and time behaviour for singular solutions to the Navier Stokes equations. Among the references, it has been shown that mathematical tools can be applied to study the asymptotic properties of solutions.
文摘1引言Hölder不等式是非常重要的不等式,本文首先给出Hölder不等式的一个等价形式,然后利用函数的凸性给出了Hölder不等式的一种新的证明方法,并据此结合受控理论(theory of majorization)给出Cauchy-Schwarz不等式的一种加细及一个新的反向Hölder不等式.我们需要一些简单的符号和高等数学知识.
文摘In this paper, we introduce and study the notion of HB-closed sets in L-topological space. Then, HB-convergence theory for L-molecular nets and L-ideals is established in terms of HB-closedness. Finally, we give a new definition of fuzzy H-continuous [1] which is called HB-continuity on the basis of the notion of H-bounded L-subsets in L-topological space. Then we give characterizations and properties by making use of HB-converges theory of L-molecular nets and L-ideals.
基金This research of Iurie Caraus was supported by a Fulbright Grant.The First author would like to thank the Department of Mathematics,North Carolina State University,and Dr.Zhilin Li for the support and the hospitality during his visitThe second author is partially supported by the US ARO grants 550694-MA,the AFSOR grant FA9550-09-1-0520,the US NSF grant DMS-0911434,the US NIH grant 096195-01,and the CNSF grant 11071123.
文摘New numerical methods based on collocation methods with the mechanical quadrature rules are proposed to solve some systems of singular integrodifferential equations that are defined on arbitrary smooth closed contours of the complex plane.We carry out the convergence analysis in classical Hölder spaces.A numerical example is also presented.
文摘In the present paper, we discuss the solution of Euler-Darboux equation in terms of Dirichlet averages of boundary conditions on H?lder space and weighted H?lder spaces of continuous functions using Riemann-Liouville fractional integral operators. Moreover, the results are interpreted in alternative form.
文摘In this paper, we introduce a K Hölder p-adic derivative that can be applied to fractal curves with different Hölder exponent K. We will show that the Koch curve satisfies the Hölder condition with exponent and has a 4-adic arithmetic-analytic representation. We will prove that the Koch curve has exact -Hölder 4-adic derivative.
基金supported by the Key Project of Gansu Provincial National Science Foundation(23JRRA1022)the National Natural Science Foundation of China(12071431)+1 种基金the Fundamental Research Funds for the Central Universities(lzujbky-2021-ey18)the Innovative Groups of Basic Research in Gansu Province(22JR5RA391).
文摘Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted Kato square root problem for L.More precisely,we prove that the square root L^(1/2)satisfies the weighted L^(p)estimates||L^(1/2)(f)||L_(ω)^p(R^(n))≤C||■f||L_(ω)^p(R^(n);R^(n))for any p∈(1,∞)andω∈Ap(ℝ^(n))(the class of Muckenhoupt weights),and that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,2+ε)andω∈Ap(ℝ^(n))∩RH_(2+ε/p),(R^(n))(the class of reverse Hölder weights),whereε∈(0,∞)is a constant depending only on n and the operator L,and where(2+ε/p)'denotes the Hölder conjugate exponent of 2+ε/p.Moreover,for any given q∈(2,∞),we give a sufficient condition to obtain that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,q)andω∈A_(p)(R^(n))∩pRH_(q/p),(R^(n)).As an application,we prove that when the coefficient matrix A that appears in L satisfies the small BMO condition,the Riesz transform∇L^(−1/2)is bounded on L_(ω)^(p)(ℝ^(n))for any given p∈(1,∞)andω∈Ap(ℝ^(n)).Furthermore,applications to the weighted L^(2)-regularity problem with the Dirichlet or the Neumann boundary condition are also given.
文摘For the step-weight function , we prove that the Holder spaces ∧a,p on the interval [-1,1], defined in terms of moduli of smoothness with the step-weight function ,are linearly isomorphic to some sequence spaces, and the isomorphism is given by the cofficients of function with respect to a system of orthonormal splines with knots uniformly distributed according to the measure with density . In case ∧a,p is contained in the space of continuous functions, we give a discrete characterization of this space, using only values of function at the appropriate knots. Application of these results to characterize the order of polynomial approximation is presented.
文摘A complementarity hypothesis concerning outsider and insider perspectives of a gargantuan black hole is proposed. The two thought experiments presented herein are followed by a brief discussion of a new interpretation of black hole interior “space-and-time-reversal”. Specifically, it is proposed that the “singularity” space of the black hole interior is time-like and the expansion time of the black hole interior is space-like. The resemblance of this new insider interpretation to our own expanding and redshifting big bang universe is compelling.