In this paper,we investigate the strong Feller property of stochastic differential equations(SDEs)with super-linear drift and Hölder diffusion coefficients.By utilizing the Girsanov theorem,coupling method,trunca...In this paper,we investigate the strong Feller property of stochastic differential equations(SDEs)with super-linear drift and Hölder diffusion coefficients.By utilizing the Girsanov theorem,coupling method,truncation method and the Yamada-Watanabe approximation technique,we derived the strong Feller property of the solution.展开更多
A new concept generalized(h,m)−preinvex function on Yang’s fractal sets is proposed.Some Ostrowski’s type inequalities with two parameters for generalized(h,m)−preinvex function are established,where three local fra...A new concept generalized(h,m)−preinvex function on Yang’s fractal sets is proposed.Some Ostrowski’s type inequalities with two parameters for generalized(h,m)−preinvex function are established,where three local fractional inequalities involving generalized midpoint type,trapezoid type and Simpson type are derived as consequences.Furthermore,as some applications,special means inequalities and numerical quadratures for local fractional integrals are discussed.展开更多
This article gives a general model using specific periodic special functions, which is degenerate elliptic Weierstrass P functions whose presence in the governing equations through the forcing terms simplify the perio...This article gives a general model using specific periodic special functions, which is degenerate elliptic Weierstrass P functions whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of cells of the 3-Torus. Satisfying a divergence-free vector field and periodic boundary conditions respectively with a general spatio-temporal forcing term which is smooth and spatially periodic, the existence of solutions which have finite time singularities can occur starting with the first derivative and higher with respect to time. The existence of a subspace of the solution space where v<sub>3</sub> is continuous and {C, y<sub>1</sub>, y<sub>1</sub><sup>2</sup>}, is linearly independent in the additive argument of the solution in terms of the Lambert W function, (y<sub>1</sub><sup>2</sup>=y<sub>2</sub>, C∈R) together with the condition v<sub>2</sub>=-2y<sub>1</sub>v<sub>1</sub>. On this subspace, the Biot Savart Law holds exactly [see Section 2 (Equation (13))]. Also on this subspace, an expression X (part of PNS equations) vanishes which contains all the expressions in derivatives of v<sub>1</sub> and v<sub>2</sub> and the forcing terms in the plane which are related as with the cancellation of all such terms in governing PDE. The y<sub>3</sub> component forcing term is arbitrarily small in ε ball where Weierstrass P functions touch the center of the ball both for inviscid and viscous cases. As a result, a significant simplification occurs with a v<sub>3 </sub>only governing PDE resulting. With viscosity present as v changes from zero to the fully viscous case at v =1 the solution for v<sub>3</sub> reaches a peak in the third component y<sub>3</sub>. Consequently, there exists a dipole which is not centered at the center of the cell of the Lattice. Hence since the dipole by definition has an equal in magnitude positive and negative peak in y<sub>3</sub>, then the dipole Riemann cut-off surface is covered by a closed surface which is the sphere and where a given cell of dimensions [-1, 1]<sup>3</sup> is circumscribed on a sphere of radius 1. For such a closed surface containing a dipole it necessarily follows that the flux at the surface of the sphere of v<sub>3</sub> wrt to surface normal n is zero including at the points where the surface of sphere touches the cube walls. At the finite time singularity on the sphere a rotation boundary condition is deduced. It is shown that v<sub>3</sub> is spatially finite on the Riemann Sphere and the forcing is oscillatory in y<sub>3</sub> component if the velocity v3</sub> is. It is true that . A boundary condition on the sphere shows the rotation of a sphere of viscous fluid. Finally on the sphere a solution for v3</sub> is obtained which is proven to be Hölder continuous and it is shown that it is possible to extend Hölder continuity on the sphere uniquely to all of the interior of the ball.展开更多
This article gives a general model using specific periodic special functions, that is, degenerate elliptic Weierstrass P functions composed with the LambertW function, whose presence in the governing equations through...This article gives a general model using specific periodic special functions, that is, degenerate elliptic Weierstrass P functions composed with the LambertW function, whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of arbitrary r balls of the 3-Torus. The continuity equation is satisfied together with spatially periodic boundary conditions. The yicomponent forcing terms consist of a function F as part of its expression that is arbitrarily small in an r ball where it is associated with a singular forcing expression both for inviscid and viscous cases. As a result, a significant simplification occurs with a v3(vifor all velocity components) only governing PDE resulting. The extension of three restricted subspaces in each of the principal directions in the Cartesian plane is shown as the Cartesian product ℋ=Jx,t×Jy,t×Jz,t. On each of these subspaces vi,i=1,2,3is continuous and there exists a linear independent subspace associated with the argument of the W function. Here the 3-Torus is built up from each compact segment of length 2R on each of the axes on the 3 principal directions x, y, and z. The form of the scaled velocities for non zero scaled δis related to the definition of the W function such that e−W(ξ)=W(ξ)ξwhere ξdepends on t and proportional to δ→0for infinite time t. The ratio Wξis equal to 1, making the limit δ→0finite and well defined. Considering r balls where the function F=(x−ai)2+(y−bi)2+(z−ci)2−ηset equal to −1e+rwhere r>0. is such that the forcing is singular at every distance r of centres of cubes each containing an r-ball. At the centre of the balls, the forcing is infinite. The main idea is that a system of singular initial value problems with infinite forcing is to be solved for where the velocities are shown to be locally Hölder continuous. It is proven that the limit of these singular problems shifts the finite time blowup time ti∗for first and higher derivatives to t=∞thereby indicating that there is no finite time blowup. Results in the literature can provide a systematic approach to study both large space and time behaviour for singular solutions to the Navier Stokes equations. Among the references, it has been shown that mathematical tools can be applied to study the asymptotic properties of solutions.展开更多
This paper focuses on the design problem of a memoryless state feedback robust H-infinity controller for a class of uncertain neutral systems. By using a newly established integral inequality, a new delay-dependent bo...This paper focuses on the design problem of a memoryless state feedback robust H-infinity controller for a class of uncertain neutral systems. By using a newly established integral inequality, a new delay-dependent bounded real lemma for such systems is derived without involving a fixed model transformation. Furthermore, new delay-dependent sufficient conditions for the existence of robust H-infinity controllers are presented in terms of nonlinear matrix inequalities. A design procedure involving an iterative algorithm is also proposed to design such controllers. Numerical examples are given to demonstrate the less conservatism of the proposed method.展开更多
By introducing some parameters and estimating the weight function,we obtain an extension of reverse Hilbert-type inequality with the best constant factor.As applications,we build its equivalent forms and some particul...By introducing some parameters and estimating the weight function,we obtain an extension of reverse Hilbert-type inequality with the best constant factor.As applications,we build its equivalent forms and some particular results.展开更多
1引言Hölder不等式是非常重要的不等式,本文首先给出Hölder不等式的一个等价形式,然后利用函数的凸性给出了Hölder不等式的一种新的证明方法,并据此结合受控理论(theory of majorization)给出Cauchy-Schwarz不等式的一...1引言Hölder不等式是非常重要的不等式,本文首先给出Hölder不等式的一个等价形式,然后利用函数的凸性给出了Hölder不等式的一种新的证明方法,并据此结合受控理论(theory of majorization)给出Cauchy-Schwarz不等式的一种加细及一个新的反向Hölder不等式.我们需要一些简单的符号和高等数学知识.展开更多
In this paper we establish the oscillation inequality of harmonic functions and HOlder estimate of the functions in the domain of the Laplacian on connected post critically finite (p.c.f.) self-similar sets.
In this paper,we establish the Hàjek-Rèniy type inequality for Banach space valued martingales generalizing the recent results of Tómcs and L'ibor [1].Then p-uniformly smoothable Banach space is c...In this paper,we establish the Hàjek-Rèniy type inequality for Banach space valued martingales generalizing the recent results of Tómcs and L'ibor [1].Then p-uniformly smoothable Banach space is characterized in terms of the Hàjek-Rèniy type inequality for Banach space valued martingales.Those results generalize the recent results of Gan Shixin [2].展开更多
基金Supported by the National Natural Science Foundation of China(11926322)the Fundamental Research Funds for the Central Universities of South-Central MinZu University(CZY22013,3212023sycxjj001)。
文摘In this paper,we investigate the strong Feller property of stochastic differential equations(SDEs)with super-linear drift and Hölder diffusion coefficients.By utilizing the Girsanov theorem,coupling method,truncation method and the Yamada-Watanabe approximation technique,we derived the strong Feller property of the solution.
基金Supported by the National Natural Science Foundation of China(Grant No.11801342)the Natural Science Foundation of Shaanxi Province(Grant No.2023-JC-YB-043).
文摘A new concept generalized(h,m)−preinvex function on Yang’s fractal sets is proposed.Some Ostrowski’s type inequalities with two parameters for generalized(h,m)−preinvex function are established,where three local fractional inequalities involving generalized midpoint type,trapezoid type and Simpson type are derived as consequences.Furthermore,as some applications,special means inequalities and numerical quadratures for local fractional integrals are discussed.
文摘This article gives a general model using specific periodic special functions, which is degenerate elliptic Weierstrass P functions whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of cells of the 3-Torus. Satisfying a divergence-free vector field and periodic boundary conditions respectively with a general spatio-temporal forcing term which is smooth and spatially periodic, the existence of solutions which have finite time singularities can occur starting with the first derivative and higher with respect to time. The existence of a subspace of the solution space where v<sub>3</sub> is continuous and {C, y<sub>1</sub>, y<sub>1</sub><sup>2</sup>}, is linearly independent in the additive argument of the solution in terms of the Lambert W function, (y<sub>1</sub><sup>2</sup>=y<sub>2</sub>, C∈R) together with the condition v<sub>2</sub>=-2y<sub>1</sub>v<sub>1</sub>. On this subspace, the Biot Savart Law holds exactly [see Section 2 (Equation (13))]. Also on this subspace, an expression X (part of PNS equations) vanishes which contains all the expressions in derivatives of v<sub>1</sub> and v<sub>2</sub> and the forcing terms in the plane which are related as with the cancellation of all such terms in governing PDE. The y<sub>3</sub> component forcing term is arbitrarily small in ε ball where Weierstrass P functions touch the center of the ball both for inviscid and viscous cases. As a result, a significant simplification occurs with a v<sub>3 </sub>only governing PDE resulting. With viscosity present as v changes from zero to the fully viscous case at v =1 the solution for v<sub>3</sub> reaches a peak in the third component y<sub>3</sub>. Consequently, there exists a dipole which is not centered at the center of the cell of the Lattice. Hence since the dipole by definition has an equal in magnitude positive and negative peak in y<sub>3</sub>, then the dipole Riemann cut-off surface is covered by a closed surface which is the sphere and where a given cell of dimensions [-1, 1]<sup>3</sup> is circumscribed on a sphere of radius 1. For such a closed surface containing a dipole it necessarily follows that the flux at the surface of the sphere of v<sub>3</sub> wrt to surface normal n is zero including at the points where the surface of sphere touches the cube walls. At the finite time singularity on the sphere a rotation boundary condition is deduced. It is shown that v<sub>3</sub> is spatially finite on the Riemann Sphere and the forcing is oscillatory in y<sub>3</sub> component if the velocity v3</sub> is. It is true that . A boundary condition on the sphere shows the rotation of a sphere of viscous fluid. Finally on the sphere a solution for v3</sub> is obtained which is proven to be Hölder continuous and it is shown that it is possible to extend Hölder continuity on the sphere uniquely to all of the interior of the ball.
文摘This article gives a general model using specific periodic special functions, that is, degenerate elliptic Weierstrass P functions composed with the LambertW function, whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of arbitrary r balls of the 3-Torus. The continuity equation is satisfied together with spatially periodic boundary conditions. The yicomponent forcing terms consist of a function F as part of its expression that is arbitrarily small in an r ball where it is associated with a singular forcing expression both for inviscid and viscous cases. As a result, a significant simplification occurs with a v3(vifor all velocity components) only governing PDE resulting. The extension of three restricted subspaces in each of the principal directions in the Cartesian plane is shown as the Cartesian product ℋ=Jx,t×Jy,t×Jz,t. On each of these subspaces vi,i=1,2,3is continuous and there exists a linear independent subspace associated with the argument of the W function. Here the 3-Torus is built up from each compact segment of length 2R on each of the axes on the 3 principal directions x, y, and z. The form of the scaled velocities for non zero scaled δis related to the definition of the W function such that e−W(ξ)=W(ξ)ξwhere ξdepends on t and proportional to δ→0for infinite time t. The ratio Wξis equal to 1, making the limit δ→0finite and well defined. Considering r balls where the function F=(x−ai)2+(y−bi)2+(z−ci)2−ηset equal to −1e+rwhere r>0. is such that the forcing is singular at every distance r of centres of cubes each containing an r-ball. At the centre of the balls, the forcing is infinite. The main idea is that a system of singular initial value problems with infinite forcing is to be solved for where the velocities are shown to be locally Hölder continuous. It is proven that the limit of these singular problems shifts the finite time blowup time ti∗for first and higher derivatives to t=∞thereby indicating that there is no finite time blowup. Results in the literature can provide a systematic approach to study both large space and time behaviour for singular solutions to the Navier Stokes equations. Among the references, it has been shown that mathematical tools can be applied to study the asymptotic properties of solutions.
基金the National Natural Science Foundation of China (No. 60525304)
文摘This paper focuses on the design problem of a memoryless state feedback robust H-infinity controller for a class of uncertain neutral systems. By using a newly established integral inequality, a new delay-dependent bounded real lemma for such systems is derived without involving a fixed model transformation. Furthermore, new delay-dependent sufficient conditions for the existence of robust H-infinity controllers are presented in terms of nonlinear matrix inequalities. A design procedure involving an iterative algorithm is also proposed to design such controllers. Numerical examples are given to demonstrate the less conservatism of the proposed method.
文摘By introducing some parameters and estimating the weight function,we obtain an extension of reverse Hilbert-type inequality with the best constant factor.As applications,we build its equivalent forms and some particular results.
文摘1引言Hölder不等式是非常重要的不等式,本文首先给出Hölder不等式的一个等价形式,然后利用函数的凸性给出了Hölder不等式的一种新的证明方法,并据此结合受控理论(theory of majorization)给出Cauchy-Schwarz不等式的一种加细及一个新的反向Hölder不等式.我们需要一些简单的符号和高等数学知识.
基金supported by the National Natural Science Foundation of China(No.11201232)Qing Lan Project of Jiangsu Province
文摘In this paper we establish the oscillation inequality of harmonic functions and HOlder estimate of the functions in the domain of the Laplacian on connected post critically finite (p.c.f.) self-similar sets.
基金Supported by the Youth Foundation of the Department of Education of Sichuan Province(07ZB042) Supported by Natural Science Foundation of the Department of Education of Sichuan Province(09ZC071)
文摘In this paper,we establish the Hàjek-Rèniy type inequality for Banach space valued martingales generalizing the recent results of Tómcs and L'ibor [1].Then p-uniformly smoothable Banach space is characterized in terms of the Hàjek-Rèniy type inequality for Banach space valued martingales.Those results generalize the recent results of Gan Shixin [2].