Heat transfer and thermochemical energy storage process of methane dry reforming in a disk reactor with focused solar simulator was modeled and analyzed. The results showed that thermochemical energy storage efficienc...Heat transfer and thermochemical energy storage process of methane dry reforming in a disk reactor with focused solar simulator was modeled and analyzed. The results showed that thermochemical energy storage efficiency of disk reactor can reach 28.4%, and that is higher than that of tubular reactor.?The maximum reaction rate occurs at catalyst bed corner near the baffle, because the corner has high temperature and high reactant molar fraction. As reactant flow increases, methane conversion and thermochemical energy storage efficiency decrease as catalyst bed temperature and heat loss decrease.?The?thermochemical energy storage efficiency increased first and then decreased with methane molar ratio increasing, while?methane conversion?and the?thermochemical energy storage efficiency increased with reactant temperature increasing.?As catalyst bed porosity rises,?methane conversion?and?thermochemical energy storage efficiency increased first and then decreased, and optimum porosity is 0.31.展开更多
In this paper, an energy system consisting of solar collector, biogas dry reforming reactor and solid oxide fuel cell (SOFC) has been proposed. The heat produced from the concentrating solar collector is used to drive...In this paper, an energy system consisting of solar collector, biogas dry reforming reactor and solid oxide fuel cell (SOFC) has been proposed. The heat produced from the concentrating solar collector is used to drive a biogas dry reforming reactor in order to produce H<sub>2</sub> as a fuel for SOFC, in such as system. The aim of this study is to clarify the impact of climate data on the performance of solar collector with various sizes/designs. The temperature of heat transfer fluid produced by the solar collector is calculated by adopting the climate data for Nagoya city in Japan in 2021. The amount of H<sub>2</sub> produced from the biogas dry reforming reactor and the power generated by SOFC were simulated. The results show the temperature of heat transfer fluid (T<sub>fb</sub>) and T<sub>fb</sub> ratio (a) based on the length of absorber (dx) = 1 m have a peak near the noon following the trend of solar intensity (I). Results also revealed that a increases with increase in dx. It is found that the differences of T<sub>fb</sub> and a between dx = 2 m and dx = 3 m are larger than those between dx = 1 m and dx = 2 m. It is revealed that T<sub>fb</sub> and a are higher in spring and summer. dx = 4 m is the optimum length of solar absorber. The amount of H<sub>2</sub> produced from the biogas dry reforming reactor as well as the power generated by SOFC is the highest in August, resulting that it is prefer to produce H<sub>2</sub> and to generate SOFC in summer.展开更多
An energy production system consisting of a solar collector, biogas dry reforming reactor and solid oxide fuel cell (SOFC) was assumed to be installed in Kolkata, India. This study aims to understand the impact of cli...An energy production system consisting of a solar collector, biogas dry reforming reactor and solid oxide fuel cell (SOFC) was assumed to be installed in Kolkata, India. This study aims to understand the impact of climate conditions on the performance of solar collectors with different lengths of parabolic trough solar collector (dx) and mass flow rate of heat transfer fluid (m). In addition, this study has evaluated the amount of H2 produced by biogas dry reforming (GH2), the amount of power generated by SOFC (PSOFC) and the maximum number of possible households (N) whose electricity demand could be met by the energy system proposed, considering the performance of solar collector with the different dx and m. As a result, the optimum dx was found to be 4 m. This study revealed that the temperature of heat transfer fluid (Tfb) decreased with the increase in m. Tfb in March, April and May was higher than that in other months, while Tfb from June to December was the lowest. GH2, PSOFC and N in March, April and May were higher than those in other months, irrespective of m. The optimum m was 0.030 kg/s.展开更多
This paper reports that a double N layer (a-Si:H/μc-Si:H) is used to substitute the single microcrystalline silicon n layer (n-μc-Si:H) in n/p tunnel recombination junction between subcells in a-Si:H/μc-Si...This paper reports that a double N layer (a-Si:H/μc-Si:H) is used to substitute the single microcrystalline silicon n layer (n-μc-Si:H) in n/p tunnel recombination junction between subcells in a-Si:H/μc-Si:H tandem solar cells. The electrical transport and optical properties of these tunnel recombination junctions are investigated by current voltage measurement and transmission measurement. The new n/p tunnel recombination junction shows a better ohmic contact. In addition, the n/p interface is exposed to the air to examine the effect of oxidation on the tunnel recombination junction performance. The open circuit voltage and FF of a-Si:H/μc-Si:H tandem solar cell are all improved and the current leakage of the subcells can be effectively prevented efficiently when the new n/p junction is implemented as tunnel recombination junction.展开更多
A novel structure of Ag gridlSiN_(x)/n+-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:HlTCO/Ag grid was designed to increase the ef-ficiency of bifacial amorphous/crystalline silicon-based solar cells and reduce the rear material c...A novel structure of Ag gridlSiN_(x)/n+-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:HlTCO/Ag grid was designed to increase the ef-ficiency of bifacial amorphous/crystalline silicon-based solar cells and reduce the rear material consumption and production cost.The simulation results show that the new structure obtains higher efficiency compared with the typical bifa-cial amorphous/crystalline silicon-based solar cell because of an increase in the short-circuit current(J_(sc)),while retaining the advantages of a high open-circuit voltage,low temperature coefficient,and good weak-light performance.Moreover,real cells composed of the novel structure with dimensions of 75 mm×75 mm were fabricated by a special fabrication recipe based on industrial processes.Without parameter optimization,the cell efficiency reached 21.1%with the J_(sc)of 41.7 mA/cm^(2).In addition,the novel structure attained 28.55%potential conversion efficiency under an illumination of AM 1.5 G,100 mW/cm^(2).We conclude that the configuration of the Ag grid/SiN_(x)/n^(+)-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:H/TCO/Ag grid is a promising structure for high efficiency and low cost.展开更多
In this paper, a-Si:H/a-SiGe:H/μc-SiGe:H triple-junction solar cell structure is proposed. By the analyses of mi- croelectronic and photonic structures (AMPS-1D) and our TRJ-F/TRJ-M/TRJ-B tunneling-recombination...In this paper, a-Si:H/a-SiGe:H/μc-SiGe:H triple-junction solar cell structure is proposed. By the analyses of mi- croelectronic and photonic structures (AMPS-1D) and our TRJ-F/TRJ-M/TRJ-B tunneling-recombination junction (TRJ) model, the most preferably combined bandgap for this structure is found to be 1.85 eV/1.50 eV/1.0 eV. Using more realistic material properties, optimized thickness combination is investigated. Along this direction, a-Si:H/a-SiGe:H/μc-SiGe:H triple cell with an initial efficiency of 12.09% (Voc = 2.03 V, FF = 0.69, Jsc = 8.63 mA/cm^2, area = 1 cm^2) is achieved in our laboratory.展开更多
This paper presents the earth’s magnetic field variations on quiet days using data from 2011 to 2014 provided by the AMBER station located at the University of Yaoundé 1 (Cameroon), whose geographic and geomagne...This paper presents the earth’s magnetic field variations on quiet days using data from 2011 to 2014 provided by the AMBER station located at the University of Yaoundé 1 (Cameroon), whose geographic and geomagnetic coordinates are respectively: (3.87°N, 11.52°E) and (5.8°S, 83.1°E). The variability of the H horizontal component of the Earth’s magnetic field was examined using the North (X) and East (Y) components of the earth’s magnetic field. The H component is then used to calculate and analyze the diurnal, monthly and seasonal Solar quiet variations Sq (H) observed in Yaoundé-Cameroon during quiet magnetic days. The results obtained show that the Sq (H) variations are seasonal. e.g., in Spring the Sq (H) amplitude (~72 nT) is larger than that of Autumn (~69 nT). The maximum values of Sq (H) vary from 48.8 nT to 57.12 nT in summer and from 41 nT to 60 nT in winter from the years 2011 to 2014. In general, these maximum values are observed around 12:00 and 13:00 in local time. These results show that the morphology of Sq (H) in Yaoundé is presented as a function of seasons. Moreover, the Sq (H) values are negative during morning hours (01:00 - 06:00) and afternoon hours (18:00 - 24:00) in local time throughout all months and all seasons. This significant negative excursion of Sq (H) in Yaoundé during the night time might be due to other physical processes such as storms or thunderclouds or to the existence of a strong induced current in Yaoundé which can affect the ground-based instruments. By referring to the solar cycle 24, our results show that the Sq (H) amplitude varies with the solar activity. The aim of this work is to analyze the diurnal, monthly and seasonal variations of Sq (H) observed in Yaoundé from 2011 to 2014.展开更多
The chemical looping reforming of methane through the nonstoichiometric ceria redox cycle(CeO2/CeO2-δ) has been experimentally investigated in a directly irradiated solar reactor to convert both solar energy and meth...The chemical looping reforming of methane through the nonstoichiometric ceria redox cycle(CeO2/CeO2-δ) has been experimentally investigated in a directly irradiated solar reactor to convert both solar energy and methane to syngas in the temperature range 900–1050 °C. Experiments were carried out with different ceria shapes via two-step redox cycling composed of endothermic partial reduction of ceria with methane and complete exothermic re-oxidation of reduced ceria with H2 O/CO2 at the same operating temperature, thereby demonstrating the capability to operate the cycle isothermally. A parametric study considering different ceria macrostructure variants(ceria packed powder, ceria packed powder mixed with inert Al2 O3 particles, and ceria reticulated porous foam) and operating parameters(methane flow-rate, reduction temperature, or sintering temperature) was conducted in order to unravel their impact on the bed-averaged oxygen non-stoichiometry(δ), syngas yield, methane conversion, and solar reactor performance. The ceria cycling stability was also experimentally investigated to demonstrate repeatable syngas production by alternating the flow between CH4 and H2 O(or CO2). A decrease in sintering temperature of the ceria foam was beneficial for increasing syngas selectivity, methane conversion,and reactor performance. Increasing both CH4 concentration and reduction temperature enhanced δ with the maximum value up to 0.41 but concomitantly favored CH4 cracking reaction. The ceria reticulated porous foam showed better performance in terms of effective heat transfer, due to volumetric absorption of concentrated solar radiation and uniform heating with lower solar power consumption, thereby promoting the solar-to-fuel energy conversion efficiency that reached up to 5.60%. The energy upgrade factor achieved during cycle was up to 1.19. Stable patterns in the δ and syngas yield for consecutive cycles with the ceria foam validated material performance stability.展开更多
Radio astronomy radio telescope plays the role of a linear operator, affecting the function that describes the object of research, formation of image of a monitored object. This paper presents methods for reconstructi...Radio astronomy radio telescope plays the role of a linear operator, affecting the function that describes the object of research, formation of image of a monitored object. This paper presents methods for reconstruction and correction of solar radio images using the algorithm of rejections, the updated Weiner-filter, and the method CLEAN designed by Hegbomom (Pseudonym, 2009) for point sources. It is the process of numerical convolution in signal handling, an algorithm for separating weak-contrast formations on the solar which represents most points of the actual limb by using the ellipse equation. Consequently, the filling algorithm is applied by moving from the center to the ellipse points and filling each point by solar image data. Finally, a linear limb-darkening expression is used to remove the limb darkening. Different examples of the intermediate and final results are presented in addition to the developed algorithm.展开更多
The effect of the parameters on the open-circuit voltage, V_(OC) of a-Si:H/c-Si heterojunction solar cells was explored by an analytical model. The analytical results show that V_(OC) increases linearly with the logar...The effect of the parameters on the open-circuit voltage, V_(OC) of a-Si:H/c-Si heterojunction solar cells was explored by an analytical model. The analytical results show that V_(OC) increases linearly with the logarithm of illumination intensity under usual illumination. There are two critical values of the interface state density(D_(it)) for the open-circuit voltage(V_(OC)), D_(it)^(crit,1) and D_(it)crit,2(a few 1010 cm^(-2)·e V^(-1)). V_(OC) decreases remarkably when D_(it) is higher than D_(it)^(crit,1). To achieve high V_(OC), the interface states should reduce down to a few 1010 cm^(-2)·e V^(-1). Due to the difference between the effective density of states in the conduction and valence band edges of c-Si, the open-circuit voltage of a-Si:H/c-Si heterojunction cells fabricated on n-type c-Si wafers is about 22 mV higher than that fabricated on p-type c-Si wafers at the same case. V_(OC) decreases with decreasing the a-Si:H doping concentration at low doping level since the electric field over the c-Si depletion region is reduced at low doping level. Therefore, the a-Si:H layer should be doped higher than a critical value of 5×10^(18) cm^(-3) to achieve high V_(OC).展开更多
Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃,...Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃, The electrical, structural, and optical properties of the films were investigated. The deposited films were then applied as i-layers for p-i-n single junction solar cells. The current-voltage (I - V) characteristics of the cells were measured before and after the light soaking. The results suggest that the films deposited near the transition region have an optimum properties for application in solar cells. The cell with an i-layer prepared near the transition region shows the best stable performance.展开更多
Hydrogen is a ubiquitous element in semiconductor processing and particularly in amorphous and microcrystalline silicon where it plays a crucial role in the growth processes as well as in the material properties. Beca...Hydrogen is a ubiquitous element in semiconductor processing and particularly in amorphous and microcrystalline silicon where it plays a crucial role in the growth processes as well as in the material properties. Because of its low mass it can easily diffuse through the silicon network and leads to the passivation of dangling bonds but it may also play a role in the stabilization of metastable defects. Thus a lot of work has been devoted to the study of hydrogen diffusion, bonding and structure in disordered semiconductors. The sequence, deposition-exposure to H plasma-deposition was used to fabricate the microcrystalline emitter. A proper atomic H pretreatment of c-Si surface before depositions i layer was expected to clean the surface and passivatates the surface states, as a result improing the device parameters. In this study, H2 pretreatment of c-si surface was used at different time, power and temperature. It is found that a proper H pretreatment improves passivation of c-si surface and improves the device parameters by AFM and testing I-V.展开更多
The degradation and decolourization of direct dye(Everdirect supra turguoise blue,FBL),acidic dye(Isolan orange S-RL) and vat dye(Indanthren red FBB) have been investigated by solar/TiO2 process.The effects of solutio...The degradation and decolourization of direct dye(Everdirect supra turguoise blue,FBL),acidic dye(Isolan orange S-RL) and vat dye(Indanthren red FBB) have been investigated by solar/TiO2 process.The effects of solution pH,dye concentration,dosage of TiO2 and nano-size of TiO2 have been studied.The increase in initial pH(3,5 and 11) and dye concentration decrease the removal rate.The treatment for FBB and FBL dye solutions is more efficient than that of S-RL.Under optimum conditions,the color removal is found to be almost complete for FBB and FBL while that of S-RL also reaches 95%.Langmuir adsorption isotherm and modified Langmuir-Hinshelwood kinetic model(L-H model) have been fitted to the experimental data and found to correlate the adsorption patterns as well as the kinetics of the dyes studied.展开更多
The effects of viscosity on the circumplanetary disks residing in the vicinity of protoplanets are investigated through two-dimensional hydrodynamical simulations with the shearing sheet model. We find that viscosity ...The effects of viscosity on the circumplanetary disks residing in the vicinity of protoplanets are investigated through two-dimensional hydrodynamical simulations with the shearing sheet model. We find that viscosity can considerably affect properties of the circumplanetary disk when the mass of the protoplanet Mp ~ 33 Me, where Me is the Earth's mass. However, effects of viscosity on the circumplanetary disk are negligibly small when the mass of the protoplanet Mp 〉 33 Me. We find that when Mp ~ 33 Me, viscosity can markedly disrupt the spiral structure of the gas around the planet and smoothly distribute the gas, which weakens the torques exerted on the protoplanet. Thus, viscosity can slow the migration speed of a protoplanet. After including viscosity, the size of the circumplanetary disk can be decreased by a factor of 〉~ 20%. Viscosity helps to transport gas into the circumplanetary disk from the differentially rotating circumstellar disk. The mass of the circumplanetary disk can be increased by a factor of 50% after viscosity is taken into account when Mp ~ 33 Me. Effects of viscosity on the formation of planets and satellites are briefly discussed.展开更多
Galactic cosmic rays and solar protons ionize the present terrestrial atmosphere,and the air showers are simulated by well-tested Monte-Carlo simulations,such as PHITS code.We use the latest version of PHITS to evalua...Galactic cosmic rays and solar protons ionize the present terrestrial atmosphere,and the air showers are simulated by well-tested Monte-Carlo simulations,such as PHITS code.We use the latest version of PHITS to evaluate the possible ionization of protoplanetary disks by galactic cosmic rays(GCRs),solar protons,and by supernova remnants.The attenuation length of GCR ionization is updated as 118 g cm^-2,which is approximately 20% larger than the popular value.Hard and soft possible spectra of solar protons give comparable and 20% smaller attenuation lengths compared with those from standard GCR spectra,respectively,while the attenuation length is approximately 10% larger for supernova remnants.Further,all of the attenuation lengths become 10% larger in the compound gas of cosmic abundance,e.g.128 g cm^-2 for GCRs,which can affect the minimum estimate of the size of dead zones in protoplanetary disks when the incident flux is unusually high.展开更多
Phosphorous-doped hydrogenated nanocrystalline silicon oxide (n-nc-SiOx:H) films are prepared via radio frequency plasma enhanced chemical vapor deposition (RF-PECVD). Increasing deposition power during n-nc-SiOx...Phosphorous-doped hydrogenated nanocrystalline silicon oxide (n-nc-SiOx:H) films are prepared via radio frequency plasma enhanced chemical vapor deposition (RF-PECVD). Increasing deposition power during n-nc-SiOx:H film growth process can enhance the formation of nanocrystalline and obtain a uniform microstructure of n-nc-SiOx:H film. In addition, in 20s interval before increasing the deposition power, high density small grains are formed in amorphous SiOx matrix with higher crystalline volume fraction (Ic) and have a lower lateral conductivity. This uniform microstructure indicates that the higher Ic can leads to better vertical conductivity, lower refractive index, wider optical band-gap. It improves the back reflection in a-Si:H/a-SiGe:H tandem solar cells acting as an n-nc-SiOx:H back reflector prepared by the gradient power during deposition. Compared with the sample with SiOx back reflector, with a constant power used in deposition process, the sample with gradient power SiOx back reflector can enhance the total short-circuit current density (Jsc) and the initial efficiency of a-Si:H/a-SiGe:H tandem solar cells by 8.3% and 15.5%, respectively.展开更多
In order to obtain higher conversion efficiency and to reduce production cost for hydrogenated amorphous silicon/crystalline silicon(a-Si:H/c-Si) based heterojunction solar cells, an a-Si:H/c-Si heterojunction with lo...In order to obtain higher conversion efficiency and to reduce production cost for hydrogenated amorphous silicon/crystalline silicon(a-Si:H/c-Si) based heterojunction solar cells, an a-Si:H/c-Si heterojunction with localized p–n structure(HACL) is designed. A numerical simulation is performed with the ATLAS program. The effect of the a-Si:H layer on the performance of the HIT(heterojunction with intrinsic thin film) solar cell is investigated. The performance improvement mechanism for the HACL cell is explored. The potential performance of the HACL solar cell is compared with those of the HIT and HACD(heterojunction of amorphous silicon and crystalline silicon with diffused junction) solar cells.The simulated results indicate that the a-Si:H layer can bring about much absorption loss. The conversion efficiency and the short-circuit current density of the HACL cell can reach 28.18% and 43.06 m A/cm^2, respectively, and are higher than those of the HIT and HACD solar cells. The great improvement are attributed to(1) decrease of optical absorption loss of a-Si:H and(2) decrease of photocarrier recombination for the HACL cell. The double-side local junction is very suitable for the bifacial solar cells. For an HACL cell with n-type or p-type c-Si base, all n-type or p-type c-Si passivating layers are feasible for convenience of the double-side diffusion process. Moreover, the HACL structure can reduce the consumption of rare materials since the transparent conductive oxide(TCO) can be free in this structure. It is concluded that the HACL solar cell is a promising structure for high efficiency and low cost.展开更多
This paper reports on the installation and observations of a new solar telescope installed on 2014 October 7 at the Kodaikanal Observatory. The telescope is a refractive type equipped with a tunable Lyot Hα filter. A...This paper reports on the installation and observations of a new solar telescope installed on 2014 October 7 at the Kodaikanal Observatory. The telescope is a refractive type equipped with a tunable Lyot Hα filter. A CCD camera with size 2k ×2k acquires images of the Sun and has a pixel size of 1.21″ pixel^-1 and a full field-of-view of 41'. The telescope is equipped with a guiding system which keeps the image of the Sun within a few pixels throughout the observations. The FWHM of the Lyot filter is 0.4A and the filter is motorized, capable of scanning the Hα line profile at a smaller step size of 0.01 A. Partial-disk imaging covering about 10' is also possible with the help of a relay lens kept in front of the CCD camera. In this paper, we report the detailed specifications of the telescope, filter unit, the installation, observations and the procedures we have followed to calibrate and align the data. We also present preliminary results with this new full-disk telescope.展开更多
To investigate the geometry of the accretion disk in the source H1743-322, we have carried out a detailed X-ray temporal and spectral study using RXTE pointed observations. We have selected all data pertaining to the ...To investigate the geometry of the accretion disk in the source H1743-322, we have carried out a detailed X-ray temporal and spectral study using RXTE pointed observations. We have selected all data pertaining to the Steep Power Law (SPL) state during the 2003 outburst of this source. We find anti-correlated hard X-ray lags in three of the observations and the changes in the spectral and timing parameters (like the QPO frequency) confirm the idea of a truncated accretion disk in this source, Compiling data from similar observations of other sources, we find a correlation between the fractional change in the QPO frequency and the observed delay. We suggest that these observations indicate a definite size scale in the inner accretion disk (the radius of the truncated disk) and we explain the observed correlation using various disk parameters like Compton cooling time scale, viscous time scale etc..展开更多
文摘Heat transfer and thermochemical energy storage process of methane dry reforming in a disk reactor with focused solar simulator was modeled and analyzed. The results showed that thermochemical energy storage efficiency of disk reactor can reach 28.4%, and that is higher than that of tubular reactor.?The maximum reaction rate occurs at catalyst bed corner near the baffle, because the corner has high temperature and high reactant molar fraction. As reactant flow increases, methane conversion and thermochemical energy storage efficiency decrease as catalyst bed temperature and heat loss decrease.?The?thermochemical energy storage efficiency increased first and then decreased with methane molar ratio increasing, while?methane conversion?and the?thermochemical energy storage efficiency increased with reactant temperature increasing.?As catalyst bed porosity rises,?methane conversion?and?thermochemical energy storage efficiency increased first and then decreased, and optimum porosity is 0.31.
文摘In this paper, an energy system consisting of solar collector, biogas dry reforming reactor and solid oxide fuel cell (SOFC) has been proposed. The heat produced from the concentrating solar collector is used to drive a biogas dry reforming reactor in order to produce H<sub>2</sub> as a fuel for SOFC, in such as system. The aim of this study is to clarify the impact of climate data on the performance of solar collector with various sizes/designs. The temperature of heat transfer fluid produced by the solar collector is calculated by adopting the climate data for Nagoya city in Japan in 2021. The amount of H<sub>2</sub> produced from the biogas dry reforming reactor and the power generated by SOFC were simulated. The results show the temperature of heat transfer fluid (T<sub>fb</sub>) and T<sub>fb</sub> ratio (a) based on the length of absorber (dx) = 1 m have a peak near the noon following the trend of solar intensity (I). Results also revealed that a increases with increase in dx. It is found that the differences of T<sub>fb</sub> and a between dx = 2 m and dx = 3 m are larger than those between dx = 1 m and dx = 2 m. It is revealed that T<sub>fb</sub> and a are higher in spring and summer. dx = 4 m is the optimum length of solar absorber. The amount of H<sub>2</sub> produced from the biogas dry reforming reactor as well as the power generated by SOFC is the highest in August, resulting that it is prefer to produce H<sub>2</sub> and to generate SOFC in summer.
文摘An energy production system consisting of a solar collector, biogas dry reforming reactor and solid oxide fuel cell (SOFC) was assumed to be installed in Kolkata, India. This study aims to understand the impact of climate conditions on the performance of solar collectors with different lengths of parabolic trough solar collector (dx) and mass flow rate of heat transfer fluid (m). In addition, this study has evaluated the amount of H2 produced by biogas dry reforming (GH2), the amount of power generated by SOFC (PSOFC) and the maximum number of possible households (N) whose electricity demand could be met by the energy system proposed, considering the performance of solar collector with the different dx and m. As a result, the optimum dx was found to be 4 m. This study revealed that the temperature of heat transfer fluid (Tfb) decreased with the increase in m. Tfb in March, April and May was higher than that in other months, while Tfb from June to December was the lowest. GH2, PSOFC and N in March, April and May were higher than those in other months, irrespective of m. The optimum m was 0.030 kg/s.
基金Project supported by the State Key Development Program for Basic Research of China (Grant Nos 2006CB202602 and2006CB202603)the National Natural Science Foundation of China (Grant No 60506003)
文摘This paper reports that a double N layer (a-Si:H/μc-Si:H) is used to substitute the single microcrystalline silicon n layer (n-μc-Si:H) in n/p tunnel recombination junction between subcells in a-Si:H/μc-Si:H tandem solar cells. The electrical transport and optical properties of these tunnel recombination junctions are investigated by current voltage measurement and transmission measurement. The new n/p tunnel recombination junction shows a better ohmic contact. In addition, the n/p interface is exposed to the air to examine the effect of oxidation on the tunnel recombination junction performance. The open circuit voltage and FF of a-Si:H/μc-Si:H tandem solar cell are all improved and the current leakage of the subcells can be effectively prevented efficiently when the new n/p junction is implemented as tunnel recombination junction.
基金Project supported by the Jiangxi Provincial Key Research and Development Foundation,China(Grant No.2016BBH80043)the Open Fund of Jiangsu Key Laboratory of Materials and Technology for Energy Conversion,China(Grant No.NJ20160032)the National Natural Science Foundation of China(Grant Nos.61741404,61464007,and 51561022)
文摘A novel structure of Ag gridlSiN_(x)/n+-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:HlTCO/Ag grid was designed to increase the ef-ficiency of bifacial amorphous/crystalline silicon-based solar cells and reduce the rear material consumption and production cost.The simulation results show that the new structure obtains higher efficiency compared with the typical bifa-cial amorphous/crystalline silicon-based solar cell because of an increase in the short-circuit current(J_(sc)),while retaining the advantages of a high open-circuit voltage,low temperature coefficient,and good weak-light performance.Moreover,real cells composed of the novel structure with dimensions of 75 mm×75 mm were fabricated by a special fabrication recipe based on industrial processes.Without parameter optimization,the cell efficiency reached 21.1%with the J_(sc)of 41.7 mA/cm^(2).In addition,the novel structure attained 28.55%potential conversion efficiency under an illumination of AM 1.5 G,100 mW/cm^(2).We conclude that the configuration of the Ag grid/SiN_(x)/n^(+)-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:H/TCO/Ag grid is a promising structure for high efficiency and low cost.
基金supported by the National Basic Research Program of China (Grant Nos. 2011CBA00705, 2011CBA00706, and 2011CBA00707)the Natural Science Foundation of Tianjin City, China (Grant No. 12JCQNJC01000)the Fundamental Research Funds for the Central Universities of China (Grant No. 65012371)
文摘In this paper, a-Si:H/a-SiGe:H/μc-SiGe:H triple-junction solar cell structure is proposed. By the analyses of mi- croelectronic and photonic structures (AMPS-1D) and our TRJ-F/TRJ-M/TRJ-B tunneling-recombination junction (TRJ) model, the most preferably combined bandgap for this structure is found to be 1.85 eV/1.50 eV/1.0 eV. Using more realistic material properties, optimized thickness combination is investigated. Along this direction, a-Si:H/a-SiGe:H/μc-SiGe:H triple cell with an initial efficiency of 12.09% (Voc = 2.03 V, FF = 0.69, Jsc = 8.63 mA/cm^2, area = 1 cm^2) is achieved in our laboratory.
文摘This paper presents the earth’s magnetic field variations on quiet days using data from 2011 to 2014 provided by the AMBER station located at the University of Yaoundé 1 (Cameroon), whose geographic and geomagnetic coordinates are respectively: (3.87°N, 11.52°E) and (5.8°S, 83.1°E). The variability of the H horizontal component of the Earth’s magnetic field was examined using the North (X) and East (Y) components of the earth’s magnetic field. The H component is then used to calculate and analyze the diurnal, monthly and seasonal Solar quiet variations Sq (H) observed in Yaoundé-Cameroon during quiet magnetic days. The results obtained show that the Sq (H) variations are seasonal. e.g., in Spring the Sq (H) amplitude (~72 nT) is larger than that of Autumn (~69 nT). The maximum values of Sq (H) vary from 48.8 nT to 57.12 nT in summer and from 41 nT to 60 nT in winter from the years 2011 to 2014. In general, these maximum values are observed around 12:00 and 13:00 in local time. These results show that the morphology of Sq (H) in Yaoundé is presented as a function of seasons. Moreover, the Sq (H) values are negative during morning hours (01:00 - 06:00) and afternoon hours (18:00 - 24:00) in local time throughout all months and all seasons. This significant negative excursion of Sq (H) in Yaoundé during the night time might be due to other physical processes such as storms or thunderclouds or to the existence of a strong induced current in Yaoundé which can affect the ground-based instruments. By referring to the solar cycle 24, our results show that the Sq (H) amplitude varies with the solar activity. The aim of this work is to analyze the diurnal, monthly and seasonal variations of Sq (H) observed in Yaoundé from 2011 to 2014.
基金The King Mongkut’s Institute of Technology Ladkrabang(KMITL),Thailandthe Franco-Thai scholarship program。
文摘The chemical looping reforming of methane through the nonstoichiometric ceria redox cycle(CeO2/CeO2-δ) has been experimentally investigated in a directly irradiated solar reactor to convert both solar energy and methane to syngas in the temperature range 900–1050 °C. Experiments were carried out with different ceria shapes via two-step redox cycling composed of endothermic partial reduction of ceria with methane and complete exothermic re-oxidation of reduced ceria with H2 O/CO2 at the same operating temperature, thereby demonstrating the capability to operate the cycle isothermally. A parametric study considering different ceria macrostructure variants(ceria packed powder, ceria packed powder mixed with inert Al2 O3 particles, and ceria reticulated porous foam) and operating parameters(methane flow-rate, reduction temperature, or sintering temperature) was conducted in order to unravel their impact on the bed-averaged oxygen non-stoichiometry(δ), syngas yield, methane conversion, and solar reactor performance. The ceria cycling stability was also experimentally investigated to demonstrate repeatable syngas production by alternating the flow between CH4 and H2 O(or CO2). A decrease in sintering temperature of the ceria foam was beneficial for increasing syngas selectivity, methane conversion,and reactor performance. Increasing both CH4 concentration and reduction temperature enhanced δ with the maximum value up to 0.41 but concomitantly favored CH4 cracking reaction. The ceria reticulated porous foam showed better performance in terms of effective heat transfer, due to volumetric absorption of concentrated solar radiation and uniform heating with lower solar power consumption, thereby promoting the solar-to-fuel energy conversion efficiency that reached up to 5.60%. The energy upgrade factor achieved during cycle was up to 1.19. Stable patterns in the δ and syngas yield for consecutive cycles with the ceria foam validated material performance stability.
文摘Radio astronomy radio telescope plays the role of a linear operator, affecting the function that describes the object of research, formation of image of a monitored object. This paper presents methods for reconstruction and correction of solar radio images using the algorithm of rejections, the updated Weiner-filter, and the method CLEAN designed by Hegbomom (Pseudonym, 2009) for point sources. It is the process of numerical convolution in signal handling, an algorithm for separating weak-contrast formations on the solar which represents most points of the actual limb by using the ellipse equation. Consequently, the filling algorithm is applied by moving from the center to the ellipse points and filling each point by solar image data. Finally, a linear limb-darkening expression is used to remove the limb darkening. Different examples of the intermediate and final results are presented in addition to the developed algorithm.
基金Project(11374094)supported by the National Natural Science Foundation of ChinaProject(2013HZX23)supported by Natural Science Foundation of Hunan University of Technology,ChinaProject(2015JJ3060)supported by Natural Science Foundation of Hunan Province of China
文摘The effect of the parameters on the open-circuit voltage, V_(OC) of a-Si:H/c-Si heterojunction solar cells was explored by an analytical model. The analytical results show that V_(OC) increases linearly with the logarithm of illumination intensity under usual illumination. There are two critical values of the interface state density(D_(it)) for the open-circuit voltage(V_(OC)), D_(it)^(crit,1) and D_(it)crit,2(a few 1010 cm^(-2)·e V^(-1)). V_(OC) decreases remarkably when D_(it) is higher than D_(it)^(crit,1). To achieve high V_(OC), the interface states should reduce down to a few 1010 cm^(-2)·e V^(-1). Due to the difference between the effective density of states in the conduction and valence band edges of c-Si, the open-circuit voltage of a-Si:H/c-Si heterojunction cells fabricated on n-type c-Si wafers is about 22 mV higher than that fabricated on p-type c-Si wafers at the same case. V_(OC) decreases with decreasing the a-Si:H doping concentration at low doping level since the electric field over the c-Si depletion region is reduced at low doping level. Therefore, the a-Si:H layer should be doped higher than a critical value of 5×10^(18) cm^(-3) to achieve high V_(OC).
文摘Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃, The electrical, structural, and optical properties of the films were investigated. The deposited films were then applied as i-layers for p-i-n single junction solar cells. The current-voltage (I - V) characteristics of the cells were measured before and after the light soaking. The results suggest that the films deposited near the transition region have an optimum properties for application in solar cells. The cell with an i-layer prepared near the transition region shows the best stable performance.
基金This project was financially supported by the Natural Science Foundation of Hebei Province, China (No.F2005000073).
文摘Hydrogen is a ubiquitous element in semiconductor processing and particularly in amorphous and microcrystalline silicon where it plays a crucial role in the growth processes as well as in the material properties. Because of its low mass it can easily diffuse through the silicon network and leads to the passivation of dangling bonds but it may also play a role in the stabilization of metastable defects. Thus a lot of work has been devoted to the study of hydrogen diffusion, bonding and structure in disordered semiconductors. The sequence, deposition-exposure to H plasma-deposition was used to fabricate the microcrystalline emitter. A proper atomic H pretreatment of c-Si surface before depositions i layer was expected to clean the surface and passivatates the surface states, as a result improing the device parameters. In this study, H2 pretreatment of c-si surface was used at different time, power and temperature. It is found that a proper H pretreatment improves passivation of c-si surface and improves the device parameters by AFM and testing I-V.
文摘The degradation and decolourization of direct dye(Everdirect supra turguoise blue,FBL),acidic dye(Isolan orange S-RL) and vat dye(Indanthren red FBB) have been investigated by solar/TiO2 process.The effects of solution pH,dye concentration,dosage of TiO2 and nano-size of TiO2 have been studied.The increase in initial pH(3,5 and 11) and dye concentration decrease the removal rate.The treatment for FBB and FBL dye solutions is more efficient than that of S-RL.Under optimum conditions,the color removal is found to be almost complete for FBB and FBL while that of S-RL also reaches 95%.Langmuir adsorption isotherm and modified Langmuir-Hinshelwood kinetic model(L-H model) have been fitted to the experimental data and found to correlate the adsorption patterns as well as the kinetics of the dyes studied.
基金Supported by the National Natural Science Foundation of Chinasupported in part by the Natural Science Foundation of China(Grant Nos.10833002,10825314,11103059,11121062 and 11133005)+1 种基金the National Basic Research Program of China(973 Program,2009CB824800)the CAS/SAFEA International Partnership Program for Creative Research Teams
文摘The effects of viscosity on the circumplanetary disks residing in the vicinity of protoplanets are investigated through two-dimensional hydrodynamical simulations with the shearing sheet model. We find that viscosity can considerably affect properties of the circumplanetary disk when the mass of the protoplanet Mp ~ 33 Me, where Me is the Earth's mass. However, effects of viscosity on the circumplanetary disk are negligibly small when the mass of the protoplanet Mp 〉 33 Me. We find that when Mp ~ 33 Me, viscosity can markedly disrupt the spiral structure of the gas around the planet and smoothly distribute the gas, which weakens the torques exerted on the protoplanet. Thus, viscosity can slow the migration speed of a protoplanet. After including viscosity, the size of the circumplanetary disk can be decreased by a factor of 〉~ 20%. Viscosity helps to transport gas into the circumplanetary disk from the differentially rotating circumstellar disk. The mass of the circumplanetary disk can be increased by a factor of 50% after viscosity is taken into account when Mp ~ 33 Me. Effects of viscosity on the formation of planets and satellites are briefly discussed.
基金supported by JSPS KAKENHI Grant Number 26106006 and 15K13581
文摘Galactic cosmic rays and solar protons ionize the present terrestrial atmosphere,and the air showers are simulated by well-tested Monte-Carlo simulations,such as PHITS code.We use the latest version of PHITS to evaluate the possible ionization of protoplanetary disks by galactic cosmic rays(GCRs),solar protons,and by supernova remnants.The attenuation length of GCR ionization is updated as 118 g cm^-2,which is approximately 20% larger than the popular value.Hard and soft possible spectra of solar protons give comparable and 20% smaller attenuation lengths compared with those from standard GCR spectra,respectively,while the attenuation length is approximately 10% larger for supernova remnants.Further,all of the attenuation lengths become 10% larger in the compound gas of cosmic abundance,e.g.128 g cm^-2 for GCRs,which can affect the minimum estimate of the size of dead zones in protoplanetary disks when the incident flux is unusually high.
基金supported by the Hi-Tech Research and Development Program of China(Grant No.2013AA050302)the National Natural Science Foundation of China(Grant No.61474065)+2 种基金Tianjin Municipal Research Key Program of Application Foundation and Advanced Technology,China(Grant No.15JCZDJC31300)the Key Project in the Science&Technology Pillar Program of Jiangsu Province,China(Grant No.BE2014147-3)the Specialized Research Fund for the Ph.D.Program of Higher Education,China(Grant No.20120031110039)
文摘Phosphorous-doped hydrogenated nanocrystalline silicon oxide (n-nc-SiOx:H) films are prepared via radio frequency plasma enhanced chemical vapor deposition (RF-PECVD). Increasing deposition power during n-nc-SiOx:H film growth process can enhance the formation of nanocrystalline and obtain a uniform microstructure of n-nc-SiOx:H film. In addition, in 20s interval before increasing the deposition power, high density small grains are formed in amorphous SiOx matrix with higher crystalline volume fraction (Ic) and have a lower lateral conductivity. This uniform microstructure indicates that the higher Ic can leads to better vertical conductivity, lower refractive index, wider optical band-gap. It improves the back reflection in a-Si:H/a-SiGe:H tandem solar cells acting as an n-nc-SiOx:H back reflector prepared by the gradient power during deposition. Compared with the sample with SiOx back reflector, with a constant power used in deposition process, the sample with gradient power SiOx back reflector can enhance the total short-circuit current density (Jsc) and the initial efficiency of a-Si:H/a-SiGe:H tandem solar cells by 8.3% and 15.5%, respectively.
基金Project supported by the National Key R&D Program of China(Grant No.2018YFB1500403)the National Natural Science Foundation of China(Grant Nos.11964018,61741404,and 61464007)the Natural Science Foundation of Jiangxi Province of China(Grant No.20181BAB202027)
文摘In order to obtain higher conversion efficiency and to reduce production cost for hydrogenated amorphous silicon/crystalline silicon(a-Si:H/c-Si) based heterojunction solar cells, an a-Si:H/c-Si heterojunction with localized p–n structure(HACL) is designed. A numerical simulation is performed with the ATLAS program. The effect of the a-Si:H layer on the performance of the HIT(heterojunction with intrinsic thin film) solar cell is investigated. The performance improvement mechanism for the HACL cell is explored. The potential performance of the HACL solar cell is compared with those of the HIT and HACD(heterojunction of amorphous silicon and crystalline silicon with diffused junction) solar cells.The simulated results indicate that the a-Si:H layer can bring about much absorption loss. The conversion efficiency and the short-circuit current density of the HACL cell can reach 28.18% and 43.06 m A/cm^2, respectively, and are higher than those of the HIT and HACD solar cells. The great improvement are attributed to(1) decrease of optical absorption loss of a-Si:H and(2) decrease of photocarrier recombination for the HACL cell. The double-side local junction is very suitable for the bifacial solar cells. For an HACL cell with n-type or p-type c-Si base, all n-type or p-type c-Si passivating layers are feasible for convenience of the double-side diffusion process. Moreover, the HACL structure can reduce the consumption of rare materials since the transparent conductive oxide(TCO) can be free in this structure. It is concluded that the HACL solar cell is a promising structure for high efficiency and low cost.
文摘This paper reports on the installation and observations of a new solar telescope installed on 2014 October 7 at the Kodaikanal Observatory. The telescope is a refractive type equipped with a tunable Lyot Hα filter. A CCD camera with size 2k ×2k acquires images of the Sun and has a pixel size of 1.21″ pixel^-1 and a full field-of-view of 41'. The telescope is equipped with a guiding system which keeps the image of the Sun within a few pixels throughout the observations. The FWHM of the Lyot filter is 0.4A and the filter is motorized, capable of scanning the Hα line profile at a smaller step size of 0.01 A. Partial-disk imaging covering about 10' is also possible with the help of a relay lens kept in front of the CCD camera. In this paper, we report the detailed specifications of the telescope, filter unit, the installation, observations and the procedures we have followed to calibrate and align the data. We also present preliminary results with this new full-disk telescope.
基金support of the NASA High Energy Astrophysics Programssupported by UGC through the RFSMS scheme
文摘To investigate the geometry of the accretion disk in the source H1743-322, we have carried out a detailed X-ray temporal and spectral study using RXTE pointed observations. We have selected all data pertaining to the Steep Power Law (SPL) state during the 2003 outburst of this source. We find anti-correlated hard X-ray lags in three of the observations and the changes in the spectral and timing parameters (like the QPO frequency) confirm the idea of a truncated accretion disk in this source, Compiling data from similar observations of other sources, we find a correlation between the fractional change in the QPO frequency and the observed delay. We suggest that these observations indicate a definite size scale in the inner accretion disk (the radius of the truncated disk) and we explain the observed correlation using various disk parameters like Compton cooling time scale, viscous time scale etc..