With the growing significance of space weather forecasting,multi-layer magnetic and helioseismic telescopes are emerging as a key area of research.However,owing to the diverse operational processes and sophisticated h...With the growing significance of space weather forecasting,multi-layer magnetic and helioseismic telescopes are emerging as a key area of research.However,owing to the diverse operational processes and sophisticated hardware configurations of these devices,there is an urgent need for efficient autonomous observation capabilities.An autonomous Master Control System(MCS)can ensure efficient performance,data consistency,and stability,and the prototype presented here adopts a microservices architecture,breaking down the hardware into multiple subsystems and converting their functions into individual services.A central decision-making system leads the operations,supported by three auxiliary systems and three device control systems.Through inter-subsystem service calls,it achieves rapid imaging and spectroscopic monitoring.To verify system stability and observation efficiency,the system was tested on the Solar Full-disk Multi-layer Magnetograph.Experimental results verify this system can operate automatically for 4 consecutive months,acquire photospheric vector magnetic and Doppler velocity fields within a 15-minute interval,and measure chromospheric longitudinal magnetic and Doppler velocity fields in under 180 s.This ensures consistent and stable solar monitoring and serves as a practical methodological benchmark for the development of similar devices.展开更多
We report that vector magnetograph (VMG) observations of the solar photosphere are being carride out by the Solar Flare Telescope (SOFT) at BOAO. The VMG uses a narrow band Lyot filter (FWHM=0 125A) for Stokes paramet...We report that vector magnetograph (VMG) observations of the solar photosphere are being carride out by the Solar Flare Telescope (SOFT) at BOAO. The VMG uses a narrow band Lyot filter (FWHM=0 125A) for Stokes parameter (I, Q, U, V) observations to obtain longitudinal and transverse fields. We have obtained a filter convolved line profile of Fe I 6302 5 for VMG by changing the central wavelength of the Lyot filter, which is consistent with the Sacremento Peak spectral atlas data. Using the line profile, we have determined calibration coefficients of longitudinal and transverse fields by the line slope method. Then we have compared vector fields of AR8422 observed at BOAO with those at Mitaka. The comparison shows that longitudinal fields are very similar to each other, but transverse fields are a little different. Finally, we present Hα and magnetic observations of AR8419 during its flaring activity (M3 1/1B).展开更多
Strong atmospheric turbulence reduces astronomical seeing,causing speckle images acquired by ground-based solar telescopes to become blurred and distorted.Severe distortion in speckle images impedes image phase deviat...Strong atmospheric turbulence reduces astronomical seeing,causing speckle images acquired by ground-based solar telescopes to become blurred and distorted.Severe distortion in speckle images impedes image phase deviation in the speckle masking reconstruction method,leading to the appearance of spurious imaging artifacts.Relying only on linear image degradation principles to reconstruct solar images is insufficient.To solve this problem,we propose the multiframe blind deconvolution combined with non-rigid alignment(MFBD-CNRA)method for solar image reconstruction.We consider image distortion caused by atmospheric turbulence and use non-rigid alignment to correct pixel-level distortion,thereby achieving nonlinear constraints to complement image intensity changes.After creating the corrected speckle image,we use the linear method to solve the wavefront phase,obtaining the target image.We verify the effectiveness of our method results,compared with others,using solar observation data from the 1 m new vacuum solar telescope(NVST).This new method successfully reconstructs high-resolution images of solar observations with a Fried parameter r0 of approximately 10 cm,and enhances images at high frequency.When r0 is approximately 5 cm,the new method is even more effective.It reconstructs the edges of solar graining and sunspots,and is greatly enhanced at mid and high frequency compared with other methods.Comparisons confirm the effectiveness of this method,with respect to both nonlinear and linear constraints in solar image reconstruction.This provides a suitable solution for image reconstruction in ground-based solar observations under strong atmospheric turbulence.展开更多
The Solar Guide Telescope (SGT), an important solar attitude sensor of theSST (Space Solar Telescope, a space solar observing instrument being developed in China), canaccurately produce pointing error signals of the S...The Solar Guide Telescope (SGT), an important solar attitude sensor of theSST (Space Solar Telescope, a space solar observing instrument being developed in China), canaccurately produce pointing error signals of the SST for attitude control at high speed. We analyzein detail the error algorithm of the heliocentric coordinates and the edge judging of solar images.The measuring accuracy of +- 0.5 arcsec of the SGT is verified by experiments on the tracking of theSun and by testing a sun simulator. Some factors causing the pointing errors are examined.展开更多
Photospheric and chromospheric observation results of the AR 5395 by 26cm solar telescope at Yunnan Observatory are reported. The daily Ha-filtergrams of the active region and flares observed during the period of Marc...Photospheric and chromospheric observation results of the AR 5395 by 26cm solar telescope at Yunnan Observatory are reported. The daily Ha-filtergrams of the active region and flares observed during the period of March 9-16, and selected photographs of sunspot group with fine structures are given.展开更多
The non-uniform temperature distribution of the main reflector of a large radio telescope may cause serious deformation of the main reflector,which will dramatically reduce the aperture efficiency of a radio telescope...The non-uniform temperature distribution of the main reflector of a large radio telescope may cause serious deformation of the main reflector,which will dramatically reduce the aperture efficiency of a radio telescope.To study the non-uniform temperature field of the main reflector of a large radio telescope,numerical calculations including thermal environment factors,the coefficients on convection and radiation,and the shadow boundary of the main reflector are first discussed.In addition,the shadow coverage and the non-uniform temperature field of the main reflector of a 70-m radio telescope under solar radiation are simulated by finite element analysis.The simulation results show that the temperature distribution of the main reflector under solar radiation is very uneven,and the maximum of the root mean square temperature is 12.3℃.To verify the simulation results,an optical camera and a thermal imaging camera are used to measure the shadow coverage and the non-uniform temperature distribution of the main reflector on a clear day.At the same time,some temperature sensors are used to measure the temperature at some points close to the main reflector on the backup structure.It has been verified that the simulation and measurement results of the shadow coverage on the main reflector are in good agreement,and the cosine similarity between the simulation and the measurement is above 90%.Despite the inevitable thermal imaging errors caused by large viewing angles,the simulated temperature field is similar to the measured temperature distribution of the main reflector to a large extent.The temperature trend measured at the test points on the backup structure close to the main reflector without direct solar radiation is consistent with the simulated temperature trend of the corresponding points on the main reflector with the solar radiation.It is credible to calculate the temperature field of the main reflector through the finite element method.This work can provide valuable references for studying the thermal deformation and the surface accuracy of the main reflector of a large radio telescope.展开更多
Flat-field reflects the non-uniformity of the photometric response at the focal plane of an instrument,which uses digital image sensors,such as Charge Coupled Device(CCD)and Complementary Metal-Oxide-Semiconductor(CMO...Flat-field reflects the non-uniformity of the photometric response at the focal plane of an instrument,which uses digital image sensors,such as Charge Coupled Device(CCD)and Complementary Metal-Oxide-Semiconductor(CMOS).This non-uniformity must be corrected before being used for scientific research.In this paper,we assess various candidate methods via simulation using available data so as to figure the in-flight flat-field calibration methodology for the Lyman-alpha Solar Telescope(LST).LST is one of the payloads for the Advanced Space-based Solar Observatory(ASO-S)mission and consists of three instruments:a White-light Solar Telescope(WST),a Solar Disk Imager(SDI)and a dual-waveband Solar Corona Imager(SCI).In our simulations,data fromthe Helioseismic andMagnetic Imager(HMI)and Atmospheric Imaging Assembly(AIA)onboard the Solar Dynamics Observatory(SDO)mission are used.Our results show that the normal KLL method is appropriate for in-flight flat-field calibration of WST and implementing a transmissive diffuser is applicable for SCI.For the in-flight flat-field calibration of SDI,we recommend the KLL method with off-pointing images with defocused resolution of around 18′′,and use the local correlation tracking(LCT)algorithm instead of limb-fitting to determine the relative displacements between different images.展开更多
This paper gives the brief view of the electronic control system of SPACE SOLAR TELESCOPE (SST), especially the On Board Data Handling unit (OBDH) on the SST which control the operation of the instrument, acquire data...This paper gives the brief view of the electronic control system of SPACE SOLAR TELESCOPE (SST), especially the On Board Data Handling unit (OBDH) on the SST which control the operation of the instrument, acquire data and make data analysis and storage. In OBDH, the Scientific Data Unit (SDU) is a special unit that requires high speed computer. In this paper gives a brief comparison of two possible choices and discuss selection of electronic parts in the space environment.展开更多
The research of Space Solar Telescope is consisted of three aspects, the BalloonBorne and Ground-Mobile Solar Telescope which is a preparing project for the Space Solar Telescope, Space Solar Telescope and researches ...The research of Space Solar Telescope is consisted of three aspects, the BalloonBorne and Ground-Mobile Solar Telescope which is a preparing project for the Space Solar Telescope, Space Solar Telescope and researches of solar magnetic field and velocity field. Thess are separately introduced in this paper.展开更多
The progress on Chinese Space Solar Telescope (SST) in 2004-2006 is introduced. The scientific objectives are further clarified and the ground operation system has been planned. The 7 key technical problems of SST sat...The progress on Chinese Space Solar Telescope (SST) in 2004-2006 is introduced. The scientific objectives are further clarified and the ground operation system has been planned. The 7 key technical problems of SST satellite platform and payloads have been tackled, which lay solid scientific and technological foundations for engineering prototype phase of the SST project. At present the SST project undergoes evaluation by CNSA and CAS so as to enter the engineering prototype phase of the SST project if it is finally approved.展开更多
This paper reports that a double N layer (a-Si:H/μc-Si:H) is used to substitute the single microcrystalline silicon n layer (n-μc-Si:H) in n/p tunnel recombination junction between subcells in a-Si:H/μc-Si...This paper reports that a double N layer (a-Si:H/μc-Si:H) is used to substitute the single microcrystalline silicon n layer (n-μc-Si:H) in n/p tunnel recombination junction between subcells in a-Si:H/μc-Si:H tandem solar cells. The electrical transport and optical properties of these tunnel recombination junctions are investigated by current voltage measurement and transmission measurement. The new n/p tunnel recombination junction shows a better ohmic contact. In addition, the n/p interface is exposed to the air to examine the effect of oxidation on the tunnel recombination junction performance. The open circuit voltage and FF of a-Si:H/μc-Si:H tandem solar cell are all improved and the current leakage of the subcells can be effectively prevented efficiently when the new n/p junction is implemented as tunnel recombination junction.展开更多
Polarization calibration unit(PCU) has become an indispensable element for solar telescopes to remove the instrumental polarization; the polarimetric accuracy of calibration depends strongly on the properties of PCU...Polarization calibration unit(PCU) has become an indispensable element for solar telescopes to remove the instrumental polarization; the polarimetric accuracy of calibration depends strongly on the properties of PCU. In the paper, we analyze the measurement errors induced by PCU based on polarized light theory and find that the imperfections of the waveplate generate the main calibration errors. An optimized calibration method is proposed to avoid the effects from waveplate imperfections, and a numerical simulation is given to evaluate the polarization accuracy by analyzing the relation between calibration error and intensity instability. The work is very important for solar telescopes with high polarization precision up to 10^(-4) I_c.展开更多
A novel structure of Ag gridlSiN_(x)/n+-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:HlTCO/Ag grid was designed to increase the ef-ficiency of bifacial amorphous/crystalline silicon-based solar cells and reduce the rear material c...A novel structure of Ag gridlSiN_(x)/n+-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:HlTCO/Ag grid was designed to increase the ef-ficiency of bifacial amorphous/crystalline silicon-based solar cells and reduce the rear material consumption and production cost.The simulation results show that the new structure obtains higher efficiency compared with the typical bifa-cial amorphous/crystalline silicon-based solar cell because of an increase in the short-circuit current(J_(sc)),while retaining the advantages of a high open-circuit voltage,low temperature coefficient,and good weak-light performance.Moreover,real cells composed of the novel structure with dimensions of 75 mm×75 mm were fabricated by a special fabrication recipe based on industrial processes.Without parameter optimization,the cell efficiency reached 21.1%with the J_(sc)of 41.7 mA/cm^(2).In addition,the novel structure attained 28.55%potential conversion efficiency under an illumination of AM 1.5 G,100 mW/cm^(2).We conclude that the configuration of the Ag grid/SiN_(x)/n^(+)-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:H/TCO/Ag grid is a promising structure for high efficiency and low cost.展开更多
Large-scale solar sails can provide power to spacecraft for deep space exploration.A new type of telescopic tubular mast(TTM)driven by a bistable carbon fiber-reinforced polymer tube was designed in this study to solv...Large-scale solar sails can provide power to spacecraft for deep space exploration.A new type of telescopic tubular mast(TTM)driven by a bistable carbon fiber-reinforced polymer tube was designed in this study to solve the problem of contact between the sail membrane and the spacecraft under light pressure.Compared with the traditional TTM,it has a small size,light weight,high extension ratio,and simple structure.The anti-blossoming and self-unlocking structure of the proposed TTM was described.We aimed to simplify the TTM with a complex structure into a beam model with equal linear mass density,and the simulation results showed good consistency.The dynamic equation was derived based on the equivalent model,and the effects of different factors on the vibration characteristics of the TTM were analyzed.The performance parameters were optimized based on a multiobjective genetic algorithm,and prototype production and load experiments were conducted.The results show that the advantages of the new TTM can complete the deployment of large-scale solar sails,which is valuable for future deep space exploration.展开更多
In this paper, a-Si:H/a-SiGe:H/μc-SiGe:H triple-junction solar cell structure is proposed. By the analyses of mi- croelectronic and photonic structures (AMPS-1D) and our TRJ-F/TRJ-M/TRJ-B tunneling-recombination...In this paper, a-Si:H/a-SiGe:H/μc-SiGe:H triple-junction solar cell structure is proposed. By the analyses of mi- croelectronic and photonic structures (AMPS-1D) and our TRJ-F/TRJ-M/TRJ-B tunneling-recombination junction (TRJ) model, the most preferably combined bandgap for this structure is found to be 1.85 eV/1.50 eV/1.0 eV. Using more realistic material properties, optimized thickness combination is investigated. Along this direction, a-Si:H/a-SiGe:H/μc-SiGe:H triple cell with an initial efficiency of 12.09% (Voc = 2.03 V, FF = 0.69, Jsc = 8.63 mA/cm^2, area = 1 cm^2) is achieved in our laboratory.展开更多
The Chinese HαSolar Explorer(CHASE)mission,dubbed as“Xihe”——Goddess of the Sun,was launched on 14 October 2021 as the first solar space mission of China National Space Administration(CNSA).The CHASE mission aims ...The Chinese HαSolar Explorer(CHASE)mission,dubbed as“Xihe”——Goddess of the Sun,was launched on 14 October 2021 as the first solar space mission of China National Space Administration(CNSA).The CHASE mission aims to test an ultra-high precision and stability platform,and to acquire solar HαSpectroscopic observations with high temporal and spectral resolutions.Since its launch,the in-orbit performance of the scientific payload——HαImaging Spectrograph(HIS)has been excellent.The first set of data has been calibrated and analyzed recently.The CHASE science data are expected to advance our understanding of the plasma dynamics in the solar lower atmosphere,and to investigate the Sun as a star for stellar physics.展开更多
This paper presents the earth’s magnetic field variations on quiet days using data from 2011 to 2014 provided by the AMBER station located at the University of Yaoundé 1 (Cameroon), whose geographic and geomagne...This paper presents the earth’s magnetic field variations on quiet days using data from 2011 to 2014 provided by the AMBER station located at the University of Yaoundé 1 (Cameroon), whose geographic and geomagnetic coordinates are respectively: (3.87°N, 11.52°E) and (5.8°S, 83.1°E). The variability of the H horizontal component of the Earth’s magnetic field was examined using the North (X) and East (Y) components of the earth’s magnetic field. The H component is then used to calculate and analyze the diurnal, monthly and seasonal Solar quiet variations Sq (H) observed in Yaoundé-Cameroon during quiet magnetic days. The results obtained show that the Sq (H) variations are seasonal. e.g., in Spring the Sq (H) amplitude (~72 nT) is larger than that of Autumn (~69 nT). The maximum values of Sq (H) vary from 48.8 nT to 57.12 nT in summer and from 41 nT to 60 nT in winter from the years 2011 to 2014. In general, these maximum values are observed around 12:00 and 13:00 in local time. These results show that the morphology of Sq (H) in Yaoundé is presented as a function of seasons. Moreover, the Sq (H) values are negative during morning hours (01:00 - 06:00) and afternoon hours (18:00 - 24:00) in local time throughout all months and all seasons. This significant negative excursion of Sq (H) in Yaoundé during the night time might be due to other physical processes such as storms or thunderclouds or to the existence of a strong induced current in Yaoundé which can affect the ground-based instruments. By referring to the solar cycle 24, our results show that the Sq (H) amplitude varies with the solar activity. The aim of this work is to analyze the diurnal, monthly and seasonal variations of Sq (H) observed in Yaoundé from 2011 to 2014.展开更多
The chemical looping reforming of methane through the nonstoichiometric ceria redox cycle(CeO2/CeO2-δ) has been experimentally investigated in a directly irradiated solar reactor to convert both solar energy and meth...The chemical looping reforming of methane through the nonstoichiometric ceria redox cycle(CeO2/CeO2-δ) has been experimentally investigated in a directly irradiated solar reactor to convert both solar energy and methane to syngas in the temperature range 900–1050 °C. Experiments were carried out with different ceria shapes via two-step redox cycling composed of endothermic partial reduction of ceria with methane and complete exothermic re-oxidation of reduced ceria with H2 O/CO2 at the same operating temperature, thereby demonstrating the capability to operate the cycle isothermally. A parametric study considering different ceria macrostructure variants(ceria packed powder, ceria packed powder mixed with inert Al2 O3 particles, and ceria reticulated porous foam) and operating parameters(methane flow-rate, reduction temperature, or sintering temperature) was conducted in order to unravel their impact on the bed-averaged oxygen non-stoichiometry(δ), syngas yield, methane conversion, and solar reactor performance. The ceria cycling stability was also experimentally investigated to demonstrate repeatable syngas production by alternating the flow between CH4 and H2 O(or CO2). A decrease in sintering temperature of the ceria foam was beneficial for increasing syngas selectivity, methane conversion,and reactor performance. Increasing both CH4 concentration and reduction temperature enhanced δ with the maximum value up to 0.41 but concomitantly favored CH4 cracking reaction. The ceria reticulated porous foam showed better performance in terms of effective heat transfer, due to volumetric absorption of concentrated solar radiation and uniform heating with lower solar power consumption, thereby promoting the solar-to-fuel energy conversion efficiency that reached up to 5.60%. The energy upgrade factor achieved during cycle was up to 1.19. Stable patterns in the δ and syngas yield for consecutive cycles with the ceria foam validated material performance stability.展开更多
The effect of the parameters on the open-circuit voltage, V_(OC) of a-Si:H/c-Si heterojunction solar cells was explored by an analytical model. The analytical results show that V_(OC) increases linearly with the logar...The effect of the parameters on the open-circuit voltage, V_(OC) of a-Si:H/c-Si heterojunction solar cells was explored by an analytical model. The analytical results show that V_(OC) increases linearly with the logarithm of illumination intensity under usual illumination. There are two critical values of the interface state density(D_(it)) for the open-circuit voltage(V_(OC)), D_(it)^(crit,1) and D_(it)crit,2(a few 1010 cm^(-2)·e V^(-1)). V_(OC) decreases remarkably when D_(it) is higher than D_(it)^(crit,1). To achieve high V_(OC), the interface states should reduce down to a few 1010 cm^(-2)·e V^(-1). Due to the difference between the effective density of states in the conduction and valence band edges of c-Si, the open-circuit voltage of a-Si:H/c-Si heterojunction cells fabricated on n-type c-Si wafers is about 22 mV higher than that fabricated on p-type c-Si wafers at the same case. V_(OC) decreases with decreasing the a-Si:H doping concentration at low doping level since the electric field over the c-Si depletion region is reduced at low doping level. Therefore, the a-Si:H layer should be doped higher than a critical value of 5×10^(18) cm^(-3) to achieve high V_(OC).展开更多
Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃,...Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃, The electrical, structural, and optical properties of the films were investigated. The deposited films were then applied as i-layers for p-i-n single junction solar cells. The current-voltage (I - V) characteristics of the cells were measured before and after the light soaking. The results suggest that the films deposited near the transition region have an optimum properties for application in solar cells. The cell with an i-layer prepared near the transition region shows the best stable performance.展开更多
基金supported by the National Key R&D Program of China (2022YFF0503800)the Chinese Meridian Project,the National Natural Science Foundation of China (11427901)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA15320102)the Youth Innovation Promotion Association (2022057).
文摘With the growing significance of space weather forecasting,multi-layer magnetic and helioseismic telescopes are emerging as a key area of research.However,owing to the diverse operational processes and sophisticated hardware configurations of these devices,there is an urgent need for efficient autonomous observation capabilities.An autonomous Master Control System(MCS)can ensure efficient performance,data consistency,and stability,and the prototype presented here adopts a microservices architecture,breaking down the hardware into multiple subsystems and converting their functions into individual services.A central decision-making system leads the operations,supported by three auxiliary systems and three device control systems.Through inter-subsystem service calls,it achieves rapid imaging and spectroscopic monitoring.To verify system stability and observation efficiency,the system was tested on the Solar Full-disk Multi-layer Magnetograph.Experimental results verify this system can operate automatically for 4 consecutive months,acquire photospheric vector magnetic and Doppler velocity fields within a 15-minute interval,and measure chromospheric longitudinal magnetic and Doppler velocity fields in under 180 s.This ensures consistent and stable solar monitoring and serves as a practical methodological benchmark for the development of similar devices.
文摘We report that vector magnetograph (VMG) observations of the solar photosphere are being carride out by the Solar Flare Telescope (SOFT) at BOAO. The VMG uses a narrow band Lyot filter (FWHM=0 125A) for Stokes parameter (I, Q, U, V) observations to obtain longitudinal and transverse fields. We have obtained a filter convolved line profile of Fe I 6302 5 for VMG by changing the central wavelength of the Lyot filter, which is consistent with the Sacremento Peak spectral atlas data. Using the line profile, we have determined calibration coefficients of longitudinal and transverse fields by the line slope method. Then we have compared vector fields of AR8422 observed at BOAO with those at Mitaka. The comparison shows that longitudinal fields are very similar to each other, but transverse fields are a little different. Finally, we present Hα and magnetic observations of AR8419 during its flaring activity (M3 1/1B).
基金sponsored by the National Natural Science Foundation of China(NSFC)under the grant numbers(11773073,11873027,U2031140,11833010)Yunnan Key Laboratory of Solar Physics and Space Science under the number 202205AG070009+1 种基金Yunnan Provincial Science and Technology Department(202103AD50013,202105AB160001,202305AH340002)the GHfund A202302013242 and CAS“Light of West China”Program 202305AS350029.
文摘Strong atmospheric turbulence reduces astronomical seeing,causing speckle images acquired by ground-based solar telescopes to become blurred and distorted.Severe distortion in speckle images impedes image phase deviation in the speckle masking reconstruction method,leading to the appearance of spurious imaging artifacts.Relying only on linear image degradation principles to reconstruct solar images is insufficient.To solve this problem,we propose the multiframe blind deconvolution combined with non-rigid alignment(MFBD-CNRA)method for solar image reconstruction.We consider image distortion caused by atmospheric turbulence and use non-rigid alignment to correct pixel-level distortion,thereby achieving nonlinear constraints to complement image intensity changes.After creating the corrected speckle image,we use the linear method to solve the wavefront phase,obtaining the target image.We verify the effectiveness of our method results,compared with others,using solar observation data from the 1 m new vacuum solar telescope(NVST).This new method successfully reconstructs high-resolution images of solar observations with a Fried parameter r0 of approximately 10 cm,and enhances images at high frequency.When r0 is approximately 5 cm,the new method is even more effective.It reconstructs the edges of solar graining and sunspots,and is greatly enhanced at mid and high frequency compared with other methods.Comparisons confirm the effectiveness of this method,with respect to both nonlinear and linear constraints in solar image reconstruction.This provides a suitable solution for image reconstruction in ground-based solar observations under strong atmospheric turbulence.
基金funded by National 863 Hi-tech Project of China.
文摘The Solar Guide Telescope (SGT), an important solar attitude sensor of theSST (Space Solar Telescope, a space solar observing instrument being developed in China), canaccurately produce pointing error signals of the SST for attitude control at high speed. We analyzein detail the error algorithm of the heliocentric coordinates and the edge judging of solar images.The measuring accuracy of +- 0.5 arcsec of the SGT is verified by experiments on the tracking of theSun and by testing a sun simulator. Some factors causing the pointing errors are examined.
文摘Photospheric and chromospheric observation results of the AR 5395 by 26cm solar telescope at Yunnan Observatory are reported. The daily Ha-filtergrams of the active region and flares observed during the period of March 9-16, and selected photographs of sunspot group with fine structures are given.
基金the Astronomical Joint Fund of National Natural Science Foundation of China and Chinese Academy of Sciences(U1831114)the National Natural Science Foundation of China(11673040 and 11803053)。
文摘The non-uniform temperature distribution of the main reflector of a large radio telescope may cause serious deformation of the main reflector,which will dramatically reduce the aperture efficiency of a radio telescope.To study the non-uniform temperature field of the main reflector of a large radio telescope,numerical calculations including thermal environment factors,the coefficients on convection and radiation,and the shadow boundary of the main reflector are first discussed.In addition,the shadow coverage and the non-uniform temperature field of the main reflector of a 70-m radio telescope under solar radiation are simulated by finite element analysis.The simulation results show that the temperature distribution of the main reflector under solar radiation is very uneven,and the maximum of the root mean square temperature is 12.3℃.To verify the simulation results,an optical camera and a thermal imaging camera are used to measure the shadow coverage and the non-uniform temperature distribution of the main reflector on a clear day.At the same time,some temperature sensors are used to measure the temperature at some points close to the main reflector on the backup structure.It has been verified that the simulation and measurement results of the shadow coverage on the main reflector are in good agreement,and the cosine similarity between the simulation and the measurement is above 90%.Despite the inevitable thermal imaging errors caused by large viewing angles,the simulated temperature field is similar to the measured temperature distribution of the main reflector to a large extent.The temperature trend measured at the test points on the backup structure close to the main reflector without direct solar radiation is consistent with the simulated temperature trend of the corresponding points on the main reflector with the solar radiation.It is credible to calculate the temperature field of the main reflector through the finite element method.This work can provide valuable references for studying the thermal deformation and the surface accuracy of the main reflector of a large radio telescope.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.U1731241,11503089 and 11973012)by the CAS Strategic Pioneer Program on Space Science(Grant Nos.XDA15052200,XDA15320103 and XDA15320301).
文摘Flat-field reflects the non-uniformity of the photometric response at the focal plane of an instrument,which uses digital image sensors,such as Charge Coupled Device(CCD)and Complementary Metal-Oxide-Semiconductor(CMOS).This non-uniformity must be corrected before being used for scientific research.In this paper,we assess various candidate methods via simulation using available data so as to figure the in-flight flat-field calibration methodology for the Lyman-alpha Solar Telescope(LST).LST is one of the payloads for the Advanced Space-based Solar Observatory(ASO-S)mission and consists of three instruments:a White-light Solar Telescope(WST),a Solar Disk Imager(SDI)and a dual-waveband Solar Corona Imager(SCI).In our simulations,data fromthe Helioseismic andMagnetic Imager(HMI)and Atmospheric Imaging Assembly(AIA)onboard the Solar Dynamics Observatory(SDO)mission are used.Our results show that the normal KLL method is appropriate for in-flight flat-field calibration of WST and implementing a transmissive diffuser is applicable for SCI.For the in-flight flat-field calibration of SDI,we recommend the KLL method with off-pointing images with defocused resolution of around 18′′,and use the local correlation tracking(LCT)algorithm instead of limb-fitting to determine the relative displacements between different images.
文摘This paper gives the brief view of the electronic control system of SPACE SOLAR TELESCOPE (SST), especially the On Board Data Handling unit (OBDH) on the SST which control the operation of the instrument, acquire data and make data analysis and storage. In OBDH, the Scientific Data Unit (SDU) is a special unit that requires high speed computer. In this paper gives a brief comparison of two possible choices and discuss selection of electronic parts in the space environment.
文摘The research of Space Solar Telescope is consisted of three aspects, the BalloonBorne and Ground-Mobile Solar Telescope which is a preparing project for the Space Solar Telescope, Space Solar Telescope and researches of solar magnetic field and velocity field. Thess are separately introduced in this paper.
文摘The progress on Chinese Space Solar Telescope (SST) in 2004-2006 is introduced. The scientific objectives are further clarified and the ground operation system has been planned. The 7 key technical problems of SST satellite platform and payloads have been tackled, which lay solid scientific and technological foundations for engineering prototype phase of the SST project. At present the SST project undergoes evaluation by CNSA and CAS so as to enter the engineering prototype phase of the SST project if it is finally approved.
基金Project supported by the State Key Development Program for Basic Research of China (Grant Nos 2006CB202602 and2006CB202603)the National Natural Science Foundation of China (Grant No 60506003)
文摘This paper reports that a double N layer (a-Si:H/μc-Si:H) is used to substitute the single microcrystalline silicon n layer (n-μc-Si:H) in n/p tunnel recombination junction between subcells in a-Si:H/μc-Si:H tandem solar cells. The electrical transport and optical properties of these tunnel recombination junctions are investigated by current voltage measurement and transmission measurement. The new n/p tunnel recombination junction shows a better ohmic contact. In addition, the n/p interface is exposed to the air to examine the effect of oxidation on the tunnel recombination junction performance. The open circuit voltage and FF of a-Si:H/μc-Si:H tandem solar cell are all improved and the current leakage of the subcells can be effectively prevented efficiently when the new n/p junction is implemented as tunnel recombination junction.
基金supported by the National Natural Science Foundation of China(Grant Nos.11403047,11427901,11178005,11373044,11273034,and 11373042)
文摘Polarization calibration unit(PCU) has become an indispensable element for solar telescopes to remove the instrumental polarization; the polarimetric accuracy of calibration depends strongly on the properties of PCU. In the paper, we analyze the measurement errors induced by PCU based on polarized light theory and find that the imperfections of the waveplate generate the main calibration errors. An optimized calibration method is proposed to avoid the effects from waveplate imperfections, and a numerical simulation is given to evaluate the polarization accuracy by analyzing the relation between calibration error and intensity instability. The work is very important for solar telescopes with high polarization precision up to 10^(-4) I_c.
基金Project supported by the Jiangxi Provincial Key Research and Development Foundation,China(Grant No.2016BBH80043)the Open Fund of Jiangsu Key Laboratory of Materials and Technology for Energy Conversion,China(Grant No.NJ20160032)the National Natural Science Foundation of China(Grant Nos.61741404,61464007,and 51561022)
文摘A novel structure of Ag gridlSiN_(x)/n+-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:HlTCO/Ag grid was designed to increase the ef-ficiency of bifacial amorphous/crystalline silicon-based solar cells and reduce the rear material consumption and production cost.The simulation results show that the new structure obtains higher efficiency compared with the typical bifa-cial amorphous/crystalline silicon-based solar cell because of an increase in the short-circuit current(J_(sc)),while retaining the advantages of a high open-circuit voltage,low temperature coefficient,and good weak-light performance.Moreover,real cells composed of the novel structure with dimensions of 75 mm×75 mm were fabricated by a special fabrication recipe based on industrial processes.Without parameter optimization,the cell efficiency reached 21.1%with the J_(sc)of 41.7 mA/cm^(2).In addition,the novel structure attained 28.55%potential conversion efficiency under an illumination of AM 1.5 G,100 mW/cm^(2).We conclude that the configuration of the Ag grid/SiN_(x)/n^(+)-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:H/TCO/Ag grid is a promising structure for high efficiency and low cost.
基金Supported by National Key R&D Program of China (Grant No.2018YFB1304600)National Natural Science Foundation of China (Grant No.51905527)+1 种基金CAS Interdisciplinary Innovation Team of China (Grant No.JCTD-2018-11)State Key Laboratory of Robotics Foundation of China (Grant No.Y91Z0303)。
文摘Large-scale solar sails can provide power to spacecraft for deep space exploration.A new type of telescopic tubular mast(TTM)driven by a bistable carbon fiber-reinforced polymer tube was designed in this study to solve the problem of contact between the sail membrane and the spacecraft under light pressure.Compared with the traditional TTM,it has a small size,light weight,high extension ratio,and simple structure.The anti-blossoming and self-unlocking structure of the proposed TTM was described.We aimed to simplify the TTM with a complex structure into a beam model with equal linear mass density,and the simulation results showed good consistency.The dynamic equation was derived based on the equivalent model,and the effects of different factors on the vibration characteristics of the TTM were analyzed.The performance parameters were optimized based on a multiobjective genetic algorithm,and prototype production and load experiments were conducted.The results show that the advantages of the new TTM can complete the deployment of large-scale solar sails,which is valuable for future deep space exploration.
基金supported by the National Basic Research Program of China (Grant Nos. 2011CBA00705, 2011CBA00706, and 2011CBA00707)the Natural Science Foundation of Tianjin City, China (Grant No. 12JCQNJC01000)the Fundamental Research Funds for the Central Universities of China (Grant No. 65012371)
文摘In this paper, a-Si:H/a-SiGe:H/μc-SiGe:H triple-junction solar cell structure is proposed. By the analyses of mi- croelectronic and photonic structures (AMPS-1D) and our TRJ-F/TRJ-M/TRJ-B tunneling-recombination junction (TRJ) model, the most preferably combined bandgap for this structure is found to be 1.85 eV/1.50 eV/1.0 eV. Using more realistic material properties, optimized thickness combination is investigated. Along this direction, a-Si:H/a-SiGe:H/μc-SiGe:H triple cell with an initial efficiency of 12.09% (Voc = 2.03 V, FF = 0.69, Jsc = 8.63 mA/cm^2, area = 1 cm^2) is achieved in our laboratory.
基金supported by China National Space Administration(CNSA)。
文摘The Chinese HαSolar Explorer(CHASE)mission,dubbed as“Xihe”——Goddess of the Sun,was launched on 14 October 2021 as the first solar space mission of China National Space Administration(CNSA).The CHASE mission aims to test an ultra-high precision and stability platform,and to acquire solar HαSpectroscopic observations with high temporal and spectral resolutions.Since its launch,the in-orbit performance of the scientific payload——HαImaging Spectrograph(HIS)has been excellent.The first set of data has been calibrated and analyzed recently.The CHASE science data are expected to advance our understanding of the plasma dynamics in the solar lower atmosphere,and to investigate the Sun as a star for stellar physics.
文摘This paper presents the earth’s magnetic field variations on quiet days using data from 2011 to 2014 provided by the AMBER station located at the University of Yaoundé 1 (Cameroon), whose geographic and geomagnetic coordinates are respectively: (3.87°N, 11.52°E) and (5.8°S, 83.1°E). The variability of the H horizontal component of the Earth’s magnetic field was examined using the North (X) and East (Y) components of the earth’s magnetic field. The H component is then used to calculate and analyze the diurnal, monthly and seasonal Solar quiet variations Sq (H) observed in Yaoundé-Cameroon during quiet magnetic days. The results obtained show that the Sq (H) variations are seasonal. e.g., in Spring the Sq (H) amplitude (~72 nT) is larger than that of Autumn (~69 nT). The maximum values of Sq (H) vary from 48.8 nT to 57.12 nT in summer and from 41 nT to 60 nT in winter from the years 2011 to 2014. In general, these maximum values are observed around 12:00 and 13:00 in local time. These results show that the morphology of Sq (H) in Yaoundé is presented as a function of seasons. Moreover, the Sq (H) values are negative during morning hours (01:00 - 06:00) and afternoon hours (18:00 - 24:00) in local time throughout all months and all seasons. This significant negative excursion of Sq (H) in Yaoundé during the night time might be due to other physical processes such as storms or thunderclouds or to the existence of a strong induced current in Yaoundé which can affect the ground-based instruments. By referring to the solar cycle 24, our results show that the Sq (H) amplitude varies with the solar activity. The aim of this work is to analyze the diurnal, monthly and seasonal variations of Sq (H) observed in Yaoundé from 2011 to 2014.
基金The King Mongkut’s Institute of Technology Ladkrabang(KMITL),Thailandthe Franco-Thai scholarship program。
文摘The chemical looping reforming of methane through the nonstoichiometric ceria redox cycle(CeO2/CeO2-δ) has been experimentally investigated in a directly irradiated solar reactor to convert both solar energy and methane to syngas in the temperature range 900–1050 °C. Experiments were carried out with different ceria shapes via two-step redox cycling composed of endothermic partial reduction of ceria with methane and complete exothermic re-oxidation of reduced ceria with H2 O/CO2 at the same operating temperature, thereby demonstrating the capability to operate the cycle isothermally. A parametric study considering different ceria macrostructure variants(ceria packed powder, ceria packed powder mixed with inert Al2 O3 particles, and ceria reticulated porous foam) and operating parameters(methane flow-rate, reduction temperature, or sintering temperature) was conducted in order to unravel their impact on the bed-averaged oxygen non-stoichiometry(δ), syngas yield, methane conversion, and solar reactor performance. The ceria cycling stability was also experimentally investigated to demonstrate repeatable syngas production by alternating the flow between CH4 and H2 O(or CO2). A decrease in sintering temperature of the ceria foam was beneficial for increasing syngas selectivity, methane conversion,and reactor performance. Increasing both CH4 concentration and reduction temperature enhanced δ with the maximum value up to 0.41 but concomitantly favored CH4 cracking reaction. The ceria reticulated porous foam showed better performance in terms of effective heat transfer, due to volumetric absorption of concentrated solar radiation and uniform heating with lower solar power consumption, thereby promoting the solar-to-fuel energy conversion efficiency that reached up to 5.60%. The energy upgrade factor achieved during cycle was up to 1.19. Stable patterns in the δ and syngas yield for consecutive cycles with the ceria foam validated material performance stability.
基金Project(11374094)supported by the National Natural Science Foundation of ChinaProject(2013HZX23)supported by Natural Science Foundation of Hunan University of Technology,ChinaProject(2015JJ3060)supported by Natural Science Foundation of Hunan Province of China
文摘The effect of the parameters on the open-circuit voltage, V_(OC) of a-Si:H/c-Si heterojunction solar cells was explored by an analytical model. The analytical results show that V_(OC) increases linearly with the logarithm of illumination intensity under usual illumination. There are two critical values of the interface state density(D_(it)) for the open-circuit voltage(V_(OC)), D_(it)^(crit,1) and D_(it)crit,2(a few 1010 cm^(-2)·e V^(-1)). V_(OC) decreases remarkably when D_(it) is higher than D_(it)^(crit,1). To achieve high V_(OC), the interface states should reduce down to a few 1010 cm^(-2)·e V^(-1). Due to the difference between the effective density of states in the conduction and valence band edges of c-Si, the open-circuit voltage of a-Si:H/c-Si heterojunction cells fabricated on n-type c-Si wafers is about 22 mV higher than that fabricated on p-type c-Si wafers at the same case. V_(OC) decreases with decreasing the a-Si:H doping concentration at low doping level since the electric field over the c-Si depletion region is reduced at low doping level. Therefore, the a-Si:H layer should be doped higher than a critical value of 5×10^(18) cm^(-3) to achieve high V_(OC).
文摘Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃, The electrical, structural, and optical properties of the films were investigated. The deposited films were then applied as i-layers for p-i-n single junction solar cells. The current-voltage (I - V) characteristics of the cells were measured before and after the light soaking. The results suggest that the films deposited near the transition region have an optimum properties for application in solar cells. The cell with an i-layer prepared near the transition region shows the best stable performance.