The ordered bimodal mesoporous silica MCM-48 spheres were facile synthesized by mild- temperature post-synthesis H2O2 hydrothermal treatment of as-synthesized MCM-48. The results showed that H2O2 is indispensable for ...The ordered bimodal mesoporous silica MCM-48 spheres were facile synthesized by mild- temperature post-synthesis H2O2 hydrothermal treatment of as-synthesized MCM-48. The results showed that H2O2 is indispensable for simultaneously removing organic templates and forming ordered bimodal mesoporous silica MCM-48 spheres. The bimodal mesoporous MCM-48 was characterized by X-ray diffraction, transmission electron micrographs, FT-IR, and N2 adsorption-desorption, and a possible mechanism was proposed for the formation of bimodal mesoporous MCM-48.展开更多
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20872135) and the China National Tobacco Corporation (No.110200701007).
文摘The ordered bimodal mesoporous silica MCM-48 spheres were facile synthesized by mild- temperature post-synthesis H2O2 hydrothermal treatment of as-synthesized MCM-48. The results showed that H2O2 is indispensable for simultaneously removing organic templates and forming ordered bimodal mesoporous silica MCM-48 spheres. The bimodal mesoporous MCM-48 was characterized by X-ray diffraction, transmission electron micrographs, FT-IR, and N2 adsorption-desorption, and a possible mechanism was proposed for the formation of bimodal mesoporous MCM-48.