Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existi...Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.展开更多
Roll motion of ships can be distinguished in two parts:an unavoidable part due to their natural movement while turning and an unwanted and avoidable part that is due to encounter with waves and rough seas in general.F...Roll motion of ships can be distinguished in two parts:an unavoidable part due to their natural movement while turning and an unwanted and avoidable part that is due to encounter with waves and rough seas in general.For the attenuation of the unwanted part of roll motion,ways have been developed such as addition of controllable fins and changes in shape.This paper investigates the effectiveness of augmenting the rudder used for rejecting part of the unwanted roll,while maintaining steering and course changing ability.For this purpose,a controller is designed,which acts through intentional superposition of fast,compared with course change,movements of rudder,in order to attenuate the high-frequency roll effects from encountering rough seas.The results obtained by simulation to exogenous disturbance support the conclusion that the roll stabilization for displacement can be effective at least when displacement hull vessels are considered.Moreover,robust stability and performance is verified for the proposed control scheme over the entire operating range of interest.展开更多
In this paper, the nonlinear singular stabilization, H∞ control problem of systems with ordinary homogeneous properties is considered. At first, we discuss the stabilization problems of nonlinear systems with homogen...In this paper, the nonlinear singular stabilization, H∞ control problem of systems with ordinary homogeneous properties is considered. At first, we discuss the stabilization problems of nonlinear systems with homogeneous. Secondly, by vitue of Hamilton-Jacobi-Isaacs equations or inequalities, we solve regular H∞ of nonlinear systems with homogeneous properties. To overcome the H∞ problem of singular nonlinear system, we try to transform inputs of the singular nonlinear system into two parts: regular part input and singular part input. Following the previous results, we solve the singular nonlinear system H∞ control, we give the Lyapunov function and the state feedback controller of the singular nonlinear systems with homogeneous properties.展开更多
Based on the complementary advantages of Line Commutated Converter(LCC)and Modular Multilevel Converter(MMC)in power grid applications,there are two types of hybrid DC system topologies:one is the parallel connection ...Based on the complementary advantages of Line Commutated Converter(LCC)and Modular Multilevel Converter(MMC)in power grid applications,there are two types of hybrid DC system topologies:one is the parallel connection of LCC converter stations and MMC converter stations,and the other is the series connection of LCC and MMC converter stations within a single station.The hybrid DC transmission system faces broad application prospects and development potential in large-scale clean energy integration across regions and the construction of a new power system dominated by new energy sources in China.This paper first analyzes the system forms and topological characteristics of hybrid DC transmission,introducing the forms and topological characteristics of converter-level hybrid DC transmission systems and system-level hybrid DC transmission systems.Next,it analyzes the operating characteristics of LCC and MMC inverter-level hybrid DC transmission systems,provides insights into the transient stability of hybrid DC transmission systems,and typical fault ride-through control strategies.Finally,it summarizes the networking characteristics of the LCC-MMC series within the converter station hybrid DC transmission system,studies the transient characteristics and fault ridethrough control strategies under different fault types for the LCC-MMC series in the receiving-end converter station,and investigates the transient characteristics and fault ride-through control strategies under different fault types for the LCC-MMC series in the sending-end converter station.展开更多
The problem of stabilizing a hybrid stochastic interval system is studied in this article. A hybrid interval system with suitable controls will become stable in the sense of mean-square exponential stability. State-fe...The problem of stabilizing a hybrid stochastic interval system is studied in this article. A hybrid interval system with suitable controls will become stable in the sense of mean-square exponential stability. State-feedback controls are designed based on the discrete-time state observations. Controls are put both in the drift and diffusion parts of the system. Criteria are derived in terms of linear matrix inequalities( LMI) to get the controllers. Also one example is given to illustrate our techniques.展开更多
This paper addresses the state-feedback H2/H-infinity controller design that satisfies D-stability constraints for stochastic systems. Firstly, the concept of regional stability for stochastic systems is defined in li...This paper addresses the state-feedback H2/H-infinity controller design that satisfies D-stability constraints for stochastic systems. Firstly, the concept of regional stability for stochastic systems is defined in linear matrix inequality(LMI) regions; Secondly, the characterization about stochastic D-stability is presented. This paper introduces a new technique to solve the regional stability problem for stochastic systems, which is different from the pole placement technique ever used in deterministic systems. Based on this, in the state-feedback case, mixed H2/H-infinity synthesis with D-stability constraints is discussed via LMI optimization.展开更多
This paper presents a distributed control protocol for consensus control of multi-agent systems(MASs) under external disturbances and network imperfections, including communication delay and random packet dropout. To ...This paper presents a distributed control protocol for consensus control of multi-agent systems(MASs) under external disturbances and network imperfections, including communication delay and random packet dropout. To comply with the discrete nature of networked systems, in contrast to most of the existing work for MASs under network imperfections,the agents are modeled by discrete-time dynamics. The communication network is considered to be undirected, its delay is considered to be time-varying but bounded, and its packet dropout is modeled by a Bernoulli distributed white sequence.Sufficient conditions in terms of linear matrix inequalities(LMIs)for asymptotic mean-square consensus stability are derived under network imperfections without considering external disturbances.A desired disturbance attenuation level in the presence of both external disturbances and network imperfections is also provided.A simulation example is given to verify the effectiveness of the proposed approach in coping with network imperfection and disturbances.展开更多
In the flight process of aircrafts, their electromechanical actuators(EMA) must have the ability of enduring uncertainties caused by factors such as load disturbance, the variation of work temperature and the EMA's...In the flight process of aircrafts, their electromechanical actuators(EMA) must have the ability of enduring uncertainties caused by factors such as load disturbance, the variation of work temperature and the EMA's nonlinearity. At present, in order to increase the EMA's robustness on the uncertainties, the H, control method has been applied in aircrafts. The major problems with standard H∞ control lie in the large overshoot of step response and the high orders of the controller. For the purpose of addressing the two problems, this paper investigates several kinds of robust control strategies of the EMA. A mathematical model of the EMA is first built, and then with MATLAB software a H∞ controller and an improved hybrid robust controller composed of a reduced order H∞controller and a lead compensator are designed. In order to make a scientific comparison of the control effects of H∞ controller, hybrid controller and classic proportion-integral-differential(PID) controller, a simulation research is made in respect of the open loop frequency response and the closed loop step response of the three controllers. For comparing the robustness of the three controllers, the load torque is entered as a disturbance and the disturbance response of error and control input are thus obtained. The experiments with the three controllers are also conducted. Through giving the EMA a command and a disturbance torque successively, the transient response and disturbing process of EMA are recorded. The simulation and experiment results show that with the help of the hybrid controller, the EMA not only guarantees good dynamic characteristics, but also has strong robustness of disturbance rejection. Therefore, the excogitated H∞ hybrid control method effectively solves the problem of large overshoot in dynamic response, and moderately meets the requirement of overcoming the uncertainties in the EMA of aircrafts.展开更多
The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platf...The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platform for payloads on spacecrafts with the robust, wide bandwidth, and multi-degree-of-freedom(MDOF). The proposed solution is based on a parallel mechanism with six voice-coil motors(VCMs) as the actuators. The linear active disturbance resistance control(LADRC) algorithm is used for the active control. Numerical simulation results show that the vibration isolation platform performs effectively over a wide bandwidth, and the resonance introduced by the passive isolation is eliminated. The system robustness to the uncertainties of the structure is also verified by simulation.展开更多
During dynamic walking of biped robots, the underactuated rotating degree of freedom (DOF) emerges between the support foot and the ground, which makes the biped model hybrid and dimension-variant. This paper addres...During dynamic walking of biped robots, the underactuated rotating degree of freedom (DOF) emerges between the support foot and the ground, which makes the biped model hybrid and dimension-variant. This paper addresses the asymptotic orbit stability for dimension-variant hybrid systems (DVHS). Based on the generalized Poincare map, the stability criterion for DVHS is also presented, and the result is then used to study dynamic walking for a five-link planar biped robot with feet. Time-invariant gait planning and nonlinear control strategy for dynamic walking with fiat feet is also introduced. Simulation results indicate that an asymptotically stable limit cycle of dynamic walking is achieved by the proposed method.展开更多
To achieve excellent tracking accuracy,a coarse-fine dual-stage control system is chosen for inertially stabilized platform.The coarse stage is a conventional inertially stabilized platform,and the fine stage is a sec...To achieve excellent tracking accuracy,a coarse-fine dual-stage control system is chosen for inertially stabilized platform.The coarse stage is a conventional inertially stabilized platform,and the fine stage is a secondary servo mechanism to control lens motion in the imaging optical path.Firstly,the dual-stage dynamics is mathematically modeled as a coupling multi-input multi-output(MIMO)control system.Then,by incorporating compensation of adaptive model to deal with parameter variations and nonlinearity,a systematic robust H∞control scheme is designed,which can achieve good tracking performance,as well as improve system robustness against model uncertainties.Lyapunov stability analysis confirmed the stability of the overall control system.Finally,simulation and experiment results are provided to demonstrate the feasibility and effectiveness of the proposed control design method.展开更多
This paper investigates the robust stochastic stability and H∞ analysis for stochastic systems with time-varying delay and Markovian jump. By using the freeweighting matrix technique, i.e., He's technique, and a sto...This paper investigates the robust stochastic stability and H∞ analysis for stochastic systems with time-varying delay and Markovian jump. By using the freeweighting matrix technique, i.e., He's technique, and a stochastic Lyapunov-Krasovskii functional, new delay-dependent criteria in terms of linear matrix inequalities are derived for the the robust stochastic stability and the H∞ disturbance attenuation. Three numerical examples axe given. The results show that the proposed method is efficient and much less conservative than the existing results in the literature.展开更多
In this paper, an optimal H∞ control algorithm was applied to the design of an active tendon system installed at the first story of a multi-story building to reduce its interstory drift due to earthquake excitations....In this paper, an optimal H∞ control algorithm was applied to the design of an active tendon system installed at the first story of a multi-story building to reduce its interstory drift due to earthquake excitations. To achieve optimal control performance and to guarantee the stability of the control system, an optimum strategy to select control parameters γ and α was developed. Analytical expressions of the upper and the lower bounds of γ and α were obtained for a single degree-of-freedom system with state feedback control. The selection ranges for both γ and α are graphically defined so that the controlled system is always stable and the control performance is better than by the conventional LQR control algorithm. Numerical results from a controlled three-story building under real earthquake excitations demonstrate that the peak first interstory drift can be significantly reduced with maximum control force around 10% of the building weight. An optimum design flow chart was provided. In addition, for a time-delayed structure, this study gave explicit formulae to calculate the critical values of γ and a. The system stability and control performance can thus be guaranteed even with time delay.展开更多
In this paper, a decentralized proportional-derivative (PD) controller design for non-uniform motion of a Hamiltonian hybrid system is considered. A Hamiltonian hybrid system with the capability of producing a non-u...In this paper, a decentralized proportional-derivative (PD) controller design for non-uniform motion of a Hamiltonian hybrid system is considered. A Hamiltonian hybrid system with the capability of producing a non-uniform motion is developed. The structural properties of the system are investigated by means of the theory of Hamiltonian systems. A relationship between the parameters of the system and the parameters of the proposed decentralized PD controller is shown to ensure local stability and tracking performance. Simulation results are included to show the obtained non-uniform motion.展开更多
This paper describes the synthesis of robust and non-fragile H∞ state feedback controllers for a class of uncertain jump linear systems with Markovian jumping parameters and state multiplicative noises. Under the ass...This paper describes the synthesis of robust and non-fragile H∞ state feedback controllers for a class of uncertain jump linear systems with Markovian jumping parameters and state multiplicative noises. Under the assumption of a complete access to the norm-bounds of the system uncertainties and controller gain variations, sufficient conditions on the existence of robust stochastic stability and γ-disturbance attenuation H∞ property are presented. A key feature of this scheme is that the gain matrices of controller are only based on It, the observed projection of the current regime rt.展开更多
Both D-stability and finite L2-gain properties are studiedfor a class of uncertain discrete-time systems with timevaryingnetwork-induced delays. By using coordinate transformand delay partition, the D-stability and H...Both D-stability and finite L2-gain properties are studiedfor a class of uncertain discrete-time systems with timevaryingnetwork-induced delays. By using coordinate transformand delay partition, the D-stability and H∞ performance problemsfor such networked control systems (NCSs) are equivalentlytransferred into the corresponding problems for switching systemswith arbitrary switching. Then, a sufficient condition for the existenceof the robust D-stabilizing controllers is derived in termsof linear matrix inequality (LMI), and the design method is alsopresented for the state feedback controllers which guarantee thatall the closed-loop poles remain inside the specified disk D(α,r)and the desired disturbance attenuation level. Finally, an illustrativeexample is given to demonstrate the effectiveness of the proposedresults.展开更多
This paper presented a tutorial exposition of H ∞ sampled data control, emphasizing the H ∞ discretization which converts the H ∞ sampled data system to an equivalent finite dimensional H ∞ ...This paper presented a tutorial exposition of H ∞ sampled data control, emphasizing the H ∞ discretization which converts the H ∞ sampled data system to an equivalent finite dimensional H ∞ discrete time system. The discretization process involves two steps. First, the original problem is changed into an equivalent infinite dimensional discrete time problem by lifting techniques. Then, further simplification is taken to reduce the problem to an equivalent finite dimensional discrete problem which can be solved by the existing techniques such as state space approach or two riccati method.展开更多
A method is proposed for synthesizing output feedback controllers for nonlinear Lur' e systems . The problem of designing an output dynamic controller for uncertain-free systems and systems subject to multiplicati...A method is proposed for synthesizing output feedback controllers for nonlinear Lur' e systems . The problem of designing an output dynamic controller for uncertain-free systems and systems subject to multiplicative norm-bounded perturbations in the linear part were proposed respectively. The procedure is based on the use of the absolute stability, through the circle criterion, and a linear matrix inequalities (LAI) formulation. The controller existence conditions are given in terms of existence of suitable solutions to a set of parameter-dependent LMIs.展开更多
This paper is concerned with the problem of robust H∞ control for a novel class of uncertain linear continuous-time systems with heterogeneous time-varying state/input delays and norm-bounded parameter uncertainties....This paper is concerned with the problem of robust H∞ control for a novel class of uncertain linear continuous-time systems with heterogeneous time-varying state/input delays and norm-bounded parameter uncertainties. The objective is to design a static output feedback controller such that the closed-loop system is asymptotically stable while satisfying a prescribed H∞ performance level for all admissible uncertainties. By constructing an appropriate Lyapunov-Krasvskii functional, a delay-dependent stability criterion of the closed-loop system is presented with the help of the Jensen integral inequality. From the derived criterion, the solutions to the problem are formulated in terms of linear matrix inequalities and hence are tractable numerically. A simulation example is given to illustrate the effectiveness of the proposed design method,展开更多
Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given qua...Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given quadratic performance criteria. First, a control law is established for jump systems based on pontryagin’s minimum principle and it can be constructed through numerical solution of iterative equations. The aim of this control strategy is to obtain an optimal control which can minimize the cost function under the worst disturbance at every sampling time. Due to the difficulty of the assurance of stability, then the above mentioned approach is improved by determining terminal weighting matrix which satisfies cost monotonicity condition. The control move which is calculated by using this type of terminal weighting matrix as boundary condition naturally guarantees the mean square stability of the closed-loop system. A sufficient condition for the existence of the terminal weighting matrix is presented in linear matrix inequality (LMI) form which can be solved efficiently by available software toolbox. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method.展开更多
基金supported by the National Natural Science Foundation of China(61833005)the Humanities and Social Science Fund of Ministry of Education of China(23YJAZH031)+1 种基金the Natural Science Foundation of Hebei Province of China(A2023209002,A2019209005)the Tangshan Science and Technology Bureau Program of Hebei Province of China(19130222g)。
文摘Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.
文摘Roll motion of ships can be distinguished in two parts:an unavoidable part due to their natural movement while turning and an unwanted and avoidable part that is due to encounter with waves and rough seas in general.For the attenuation of the unwanted part of roll motion,ways have been developed such as addition of controllable fins and changes in shape.This paper investigates the effectiveness of augmenting the rudder used for rejecting part of the unwanted roll,while maintaining steering and course changing ability.For this purpose,a controller is designed,which acts through intentional superposition of fast,compared with course change,movements of rudder,in order to attenuate the high-frequency roll effects from encountering rough seas.The results obtained by simulation to exogenous disturbance support the conclusion that the roll stabilization for displacement can be effective at least when displacement hull vessels are considered.Moreover,robust stability and performance is verified for the proposed control scheme over the entire operating range of interest.
基金Supported by the Education Department of Henan Province(200511517007)
文摘In this paper, the nonlinear singular stabilization, H∞ control problem of systems with ordinary homogeneous properties is considered. At first, we discuss the stabilization problems of nonlinear systems with homogeneous. Secondly, by vitue of Hamilton-Jacobi-Isaacs equations or inequalities, we solve regular H∞ of nonlinear systems with homogeneous properties. To overcome the H∞ problem of singular nonlinear system, we try to transform inputs of the singular nonlinear system into two parts: regular part input and singular part input. Following the previous results, we solve the singular nonlinear system H∞ control, we give the Lyapunov function and the state feedback controller of the singular nonlinear systems with homogeneous properties.
基金supported by the Joint Research Fund in Smart Grid(U23B20120)under cooperative agreement between the National Natural Science Foundation of China and State Grid Corporation of China。
文摘Based on the complementary advantages of Line Commutated Converter(LCC)and Modular Multilevel Converter(MMC)in power grid applications,there are two types of hybrid DC system topologies:one is the parallel connection of LCC converter stations and MMC converter stations,and the other is the series connection of LCC and MMC converter stations within a single station.The hybrid DC transmission system faces broad application prospects and development potential in large-scale clean energy integration across regions and the construction of a new power system dominated by new energy sources in China.This paper first analyzes the system forms and topological characteristics of hybrid DC transmission,introducing the forms and topological characteristics of converter-level hybrid DC transmission systems and system-level hybrid DC transmission systems.Next,it analyzes the operating characteristics of LCC and MMC inverter-level hybrid DC transmission systems,provides insights into the transient stability of hybrid DC transmission systems,and typical fault ride-through control strategies.Finally,it summarizes the networking characteristics of the LCC-MMC series within the converter station hybrid DC transmission system,studies the transient characteristics and fault ridethrough control strategies under different fault types for the LCC-MMC series in the receiving-end converter station,and investigates the transient characteristics and fault ride-through control strategies under different fault types for the LCC-MMC series in the sending-end converter station.
基金Fundamental Research Funds for the Central Universities,China(No.2232014D3-13)Natural Science Foundation of Shanghai,China(No.17ZR1401300)
文摘The problem of stabilizing a hybrid stochastic interval system is studied in this article. A hybrid interval system with suitable controls will become stable in the sense of mean-square exponential stability. State-feedback controls are designed based on the discrete-time state observations. Controls are put both in the drift and diffusion parts of the system. Criteria are derived in terms of linear matrix inequalities( LMI) to get the controllers. Also one example is given to illustrate our techniques.
基金This work was supported by the National Natural Science Foundation of China (No. 60474013)
文摘This paper addresses the state-feedback H2/H-infinity controller design that satisfies D-stability constraints for stochastic systems. Firstly, the concept of regional stability for stochastic systems is defined in linear matrix inequality(LMI) regions; Secondly, the characterization about stochastic D-stability is presented. This paper introduces a new technique to solve the regional stability problem for stochastic systems, which is different from the pole placement technique ever used in deterministic systems. Based on this, in the state-feedback case, mixed H2/H-infinity synthesis with D-stability constraints is discussed via LMI optimization.
文摘This paper presents a distributed control protocol for consensus control of multi-agent systems(MASs) under external disturbances and network imperfections, including communication delay and random packet dropout. To comply with the discrete nature of networked systems, in contrast to most of the existing work for MASs under network imperfections,the agents are modeled by discrete-time dynamics. The communication network is considered to be undirected, its delay is considered to be time-varying but bounded, and its packet dropout is modeled by a Bernoulli distributed white sequence.Sufficient conditions in terms of linear matrix inequalities(LMIs)for asymptotic mean-square consensus stability are derived under network imperfections without considering external disturbances.A desired disturbance attenuation level in the presence of both external disturbances and network imperfections is also provided.A simulation example is given to verify the effectiveness of the proposed approach in coping with network imperfection and disturbances.
基金supported by National Astronautic Foundation of China
文摘In the flight process of aircrafts, their electromechanical actuators(EMA) must have the ability of enduring uncertainties caused by factors such as load disturbance, the variation of work temperature and the EMA's nonlinearity. At present, in order to increase the EMA's robustness on the uncertainties, the H, control method has been applied in aircrafts. The major problems with standard H∞ control lie in the large overshoot of step response and the high orders of the controller. For the purpose of addressing the two problems, this paper investigates several kinds of robust control strategies of the EMA. A mathematical model of the EMA is first built, and then with MATLAB software a H∞ controller and an improved hybrid robust controller composed of a reduced order H∞controller and a lead compensator are designed. In order to make a scientific comparison of the control effects of H∞ controller, hybrid controller and classic proportion-integral-differential(PID) controller, a simulation research is made in respect of the open loop frequency response and the closed loop step response of the three controllers. For comparing the robustness of the three controllers, the load torque is entered as a disturbance and the disturbance response of error and control input are thus obtained. The experiments with the three controllers are also conducted. Through giving the EMA a command and a disturbance torque successively, the transient response and disturbing process of EMA are recorded. The simulation and experiment results show that with the help of the hybrid controller, the EMA not only guarantees good dynamic characteristics, but also has strong robustness of disturbance rejection. Therefore, the excogitated H∞ hybrid control method effectively solves the problem of large overshoot in dynamic response, and moderately meets the requirement of overcoming the uncertainties in the EMA of aircrafts.
基金the National Natural Science Foundation of China (No. 11572215)the Fundamental Research Funds for the Central Universities (No. N160503002)the China Scholarship Council。
文摘The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platform for payloads on spacecrafts with the robust, wide bandwidth, and multi-degree-of-freedom(MDOF). The proposed solution is based on a parallel mechanism with six voice-coil motors(VCMs) as the actuators. The linear active disturbance resistance control(LADRC) algorithm is used for the active control. Numerical simulation results show that the vibration isolation platform performs effectively over a wide bandwidth, and the resonance introduced by the passive isolation is eliminated. The system robustness to the uncertainties of the structure is also verified by simulation.
基金the National Natural Science Foundation of China (No. 50575119)the 863 Program(No. 2006AA04Z253)the Ph.D.Programs Foundation of Ministry of Education of China(No. 20060003026)
文摘During dynamic walking of biped robots, the underactuated rotating degree of freedom (DOF) emerges between the support foot and the ground, which makes the biped model hybrid and dimension-variant. This paper addresses the asymptotic orbit stability for dimension-variant hybrid systems (DVHS). Based on the generalized Poincare map, the stability criterion for DVHS is also presented, and the result is then used to study dynamic walking for a five-link planar biped robot with feet. Time-invariant gait planning and nonlinear control strategy for dynamic walking with fiat feet is also introduced. Simulation results indicate that an asymptotically stable limit cycle of dynamic walking is achieved by the proposed method.
基金Project (61174203) supported by the National Natural Science Foundation of China
文摘To achieve excellent tracking accuracy,a coarse-fine dual-stage control system is chosen for inertially stabilized platform.The coarse stage is a conventional inertially stabilized platform,and the fine stage is a secondary servo mechanism to control lens motion in the imaging optical path.Firstly,the dual-stage dynamics is mathematically modeled as a coupling multi-input multi-output(MIMO)control system.Then,by incorporating compensation of adaptive model to deal with parameter variations and nonlinearity,a systematic robust H∞control scheme is designed,which can achieve good tracking performance,as well as improve system robustness against model uncertainties.Lyapunov stability analysis confirmed the stability of the overall control system.Finally,simulation and experiment results are provided to demonstrate the feasibility and effectiveness of the proposed control design method.
基金Project supported by the National Natural Science Foundation of China (No. 60874027)
文摘This paper investigates the robust stochastic stability and H∞ analysis for stochastic systems with time-varying delay and Markovian jump. By using the freeweighting matrix technique, i.e., He's technique, and a stochastic Lyapunov-Krasovskii functional, new delay-dependent criteria in terms of linear matrix inequalities are derived for the the robust stochastic stability and the H∞ disturbance attenuation. Three numerical examples axe given. The results show that the proposed method is efficient and much less conservative than the existing results in the literature.
基金Ministry of Education and the Science Council (NSC) of Taiwan Under the ATU plan and Grants No. NSC 95-2625-Z-005-009
文摘In this paper, an optimal H∞ control algorithm was applied to the design of an active tendon system installed at the first story of a multi-story building to reduce its interstory drift due to earthquake excitations. To achieve optimal control performance and to guarantee the stability of the control system, an optimum strategy to select control parameters γ and α was developed. Analytical expressions of the upper and the lower bounds of γ and α were obtained for a single degree-of-freedom system with state feedback control. The selection ranges for both γ and α are graphically defined so that the controlled system is always stable and the control performance is better than by the conventional LQR control algorithm. Numerical results from a controlled three-story building under real earthquake excitations demonstrate that the peak first interstory drift can be significantly reduced with maximum control force around 10% of the building weight. An optimum design flow chart was provided. In addition, for a time-delayed structure, this study gave explicit formulae to calculate the critical values of γ and a. The system stability and control performance can thus be guaranteed even with time delay.
文摘In this paper, a decentralized proportional-derivative (PD) controller design for non-uniform motion of a Hamiltonian hybrid system is considered. A Hamiltonian hybrid system with the capability of producing a non-uniform motion is developed. The structural properties of the system are investigated by means of the theory of Hamiltonian systems. A relationship between the parameters of the system and the parameters of the proposed decentralized PD controller is shown to ensure local stability and tracking performance. Simulation results are included to show the obtained non-uniform motion.
基金Supported by National Natural Science Foundation of P. R. China (60274012)
文摘This paper describes the synthesis of robust and non-fragile H∞ state feedback controllers for a class of uncertain jump linear systems with Markovian jumping parameters and state multiplicative noises. Under the assumption of a complete access to the norm-bounds of the system uncertainties and controller gain variations, sufficient conditions on the existence of robust stochastic stability and γ-disturbance attenuation H∞ property are presented. A key feature of this scheme is that the gain matrices of controller are only based on It, the observed projection of the current regime rt.
基金supported by the National Natural Science Foundation of China(61403344)
文摘Both D-stability and finite L2-gain properties are studiedfor a class of uncertain discrete-time systems with timevaryingnetwork-induced delays. By using coordinate transformand delay partition, the D-stability and H∞ performance problemsfor such networked control systems (NCSs) are equivalentlytransferred into the corresponding problems for switching systemswith arbitrary switching. Then, a sufficient condition for the existenceof the robust D-stabilizing controllers is derived in termsof linear matrix inequality (LMI), and the design method is alsopresented for the state feedback controllers which guarantee thatall the closed-loop poles remain inside the specified disk D(α,r)and the desired disturbance attenuation level. Finally, an illustrativeexample is given to demonstrate the effectiveness of the proposedresults.
文摘This paper presented a tutorial exposition of H ∞ sampled data control, emphasizing the H ∞ discretization which converts the H ∞ sampled data system to an equivalent finite dimensional H ∞ discrete time system. The discretization process involves two steps. First, the original problem is changed into an equivalent infinite dimensional discrete time problem by lifting techniques. Then, further simplification is taken to reduce the problem to an equivalent finite dimensional discrete problem which can be solved by the existing techniques such as state space approach or two riccati method.
基金Foundation items: the National Natural Science Foundation of China (10272001) the National Key Basic Research Special Foundation of China (G1998020302)
文摘A method is proposed for synthesizing output feedback controllers for nonlinear Lur' e systems . The problem of designing an output dynamic controller for uncertain-free systems and systems subject to multiplicative norm-bounded perturbations in the linear part were proposed respectively. The procedure is based on the use of the absolute stability, through the circle criterion, and a linear matrix inequalities (LAI) formulation. The controller existence conditions are given in terms of existence of suitable solutions to a set of parameter-dependent LMIs.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61104138)the Guangdong Natural Science Foundation,China (Grant No. S2011040001704)the Foundation for Distinguished Young Talents in Higher Education of Guangdong,China (Grant No. LYM10074)
文摘This paper is concerned with the problem of robust H∞ control for a novel class of uncertain linear continuous-time systems with heterogeneous time-varying state/input delays and norm-bounded parameter uncertainties. The objective is to design a static output feedback controller such that the closed-loop system is asymptotically stable while satisfying a prescribed H∞ performance level for all admissible uncertainties. By constructing an appropriate Lyapunov-Krasvskii functional, a delay-dependent stability criterion of the closed-loop system is presented with the help of the Jensen integral inequality. From the derived criterion, the solutions to the problem are formulated in terms of linear matrix inequalities and hence are tractable numerically. A simulation example is given to illustrate the effectiveness of the proposed design method,
基金supported by the National Natural Science Foundation of China (60974001)Jiangsu "Six Personnel Peak" Talent-Funded Projects
文摘Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given quadratic performance criteria. First, a control law is established for jump systems based on pontryagin’s minimum principle and it can be constructed through numerical solution of iterative equations. The aim of this control strategy is to obtain an optimal control which can minimize the cost function under the worst disturbance at every sampling time. Due to the difficulty of the assurance of stability, then the above mentioned approach is improved by determining terminal weighting matrix which satisfies cost monotonicity condition. The control move which is calculated by using this type of terminal weighting matrix as boundary condition naturally guarantees the mean square stability of the closed-loop system. A sufficient condition for the existence of the terminal weighting matrix is presented in linear matrix inequality (LMI) form which can be solved efficiently by available software toolbox. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method.