The weighted HP(ω) spaces on the homogeneous type spaces have been defined in [1],in this paper we shall show the equivalence of various characterizations of HP (ω) on the certain groups that are the special kind o...The weighted HP(ω) spaces on the homogeneous type spaces have been defined in [1],in this paper we shall show the equivalence of various characterizations of HP (ω) on the certain groups that are the special kind of the homogeneous type spaces.展开更多
In this paper we discuss the weak type(IP,I)boundedness of a class of maximal operators T and themaximal strong,mean boundedness of a family of the operators {T on the atomic IP spaces on compaet Lie groups.Also,we ob...In this paper we discuss the weak type(IP,I)boundedness of a class of maximal operators T and themaximal strong,mean boundedness of a family of the operators {T on the atomic IP spaces on compaet Lie groups.Also,we obtain the correspoding convergent rosults.展开更多
The author obtains some weighted Hardy-type inequalities on H-type groups and anisotropic Heisenberg groups. These inequalities generalize some recent results due to N. Garofalo, E. Lanconelli, I. Kombe and P. Niu et al.
The authors present the general theory of cleft extensions for a cocommutative weak Hopf algebra H. For a right H-comodule algebra, they obtain a bijective corre- spondence between the isomorphisms classes of H-cleft ...The authors present the general theory of cleft extensions for a cocommutative weak Hopf algebra H. For a right H-comodule algebra, they obtain a bijective corre- spondence between the isomorphisms classes of H-cleft extensions AH → A, where AH is the subalgebra of coinvariants, and the equivalence classes of crossed systems for H over AH. Finally, they establish a bijection between the set of equivalence classes of crossed systems with a fixed weak H-module algebra structure and the second cohomology group H2φZ(AH) (H, Z(AH)), where Z(AH) is the center of AH.展开更多
By End(G) and hEnd(G) we denote the set of endomorphisms and half-strong endomorphisms of a graph G respectively. A graph G is said to be E-H-unretractive if End(G) = hEnd(G). A general characterization of an ...By End(G) and hEnd(G) we denote the set of endomorphisms and half-strong endomorphisms of a graph G respectively. A graph G is said to be E-H-unretractive if End(G) = hEnd(G). A general characterization of an E-H-unretractive graph seems to be difficult. In this paper, bipartite graphs with E-H-unretractivity are characterized explicitly.展开更多
In this paper, the authors introduce the concept of h-quasiconvex functions on Carnot groups G. It is shown that the notions of h-quasiconvex functions and h-convex sets are equivalent and the L^∞ estimates of first ...In this paper, the authors introduce the concept of h-quasiconvex functions on Carnot groups G. It is shown that the notions of h-quasiconvex functions and h-convex sets are equivalent and the L^∞ estimates of first derivatives of h-quasiconvex functions are given. For a Carnot group G of step two, it is proved that h-quasiconvex functions are locally bounded from above. Furthermore, the authors obtain that h-convex functions are locally Lipschitz continuous and that an h-convex function is twice differentiable almost everywhere.展开更多
文摘The weighted HP(ω) spaces on the homogeneous type spaces have been defined in [1],in this paper we shall show the equivalence of various characterizations of HP (ω) on the certain groups that are the special kind of the homogeneous type spaces.
文摘In this paper we discuss the weak type(IP,I)boundedness of a class of maximal operators T and themaximal strong,mean boundedness of a family of the operators {T on the atomic IP spaces on compaet Lie groups.Also,we obtain the correspoding convergent rosults.
基金the China State Scholarship (No. 2003833095)the Department of Education of Zhejiang Province (No. 20051495)
文摘The author obtains some weighted Hardy-type inequalities on H-type groups and anisotropic Heisenberg groups. These inequalities generalize some recent results due to N. Garofalo, E. Lanconelli, I. Kombe and P. Niu et al.
基金supported by the project of Ministerio de Ciencia e Innovación(No.MTM2010-15634)Fondo Europeo de Desarrollo Regional
文摘The authors present the general theory of cleft extensions for a cocommutative weak Hopf algebra H. For a right H-comodule algebra, they obtain a bijective corre- spondence between the isomorphisms classes of H-cleft extensions AH → A, where AH is the subalgebra of coinvariants, and the equivalence classes of crossed systems for H over AH. Finally, they establish a bijection between the set of equivalence classes of crossed systems with a fixed weak H-module algebra structure and the second cohomology group H2φZ(AH) (H, Z(AH)), where Z(AH) is the center of AH.
基金the National Natural Science Foundation of China (No. 10671122).Acknowledgement The author would like to thank Professor Dr. U.Knauer for valuable advice and helpful comments on this paper.
文摘By End(G) and hEnd(G) we denote the set of endomorphisms and half-strong endomorphisms of a graph G respectively. A graph G is said to be E-H-unretractive if End(G) = hEnd(G). A general characterization of an E-H-unretractive graph seems to be difficult. In this paper, bipartite graphs with E-H-unretractivity are characterized explicitly.
基金Project supported by the Science Foundation for Pure Research of Natural Sciences of the Education Department of Hunan Province (No. 2004c251)the Hunan Provincial Natural Science Foundation of China (No. 05JJ30006)the National Natural Science Foundation of China (No. 10471063).
文摘In this paper, the authors introduce the concept of h-quasiconvex functions on Carnot groups G. It is shown that the notions of h-quasiconvex functions and h-convex sets are equivalent and the L^∞ estimates of first derivatives of h-quasiconvex functions are given. For a Carnot group G of step two, it is proved that h-quasiconvex functions are locally bounded from above. Furthermore, the authors obtain that h-convex functions are locally Lipschitz continuous and that an h-convex function is twice differentiable almost everywhere.