The mechanisms and kinetics of the gas phase reactions that the hydrogen atom in formyl fluoride (FCHO) abstracted by OH in the presence of water, formic acid (FA), or sulfuric acid (SA) are theoretically invest...The mechanisms and kinetics of the gas phase reactions that the hydrogen atom in formyl fluoride (FCHO) abstracted by OH in the presence of water, formic acid (FA), or sulfuric acid (SA) are theoretically investigated at the CCSD(T)/6-311++G(3df, 3pd)//MO6-2X/6- 311++G(3df, 3pd) level of theory. The calculated results show that the barriers of the transition states involving catalysts are lowered to -2.89, -6.25, and -7.76 kcal/mol from 3.64 kcal/mol with respect to the separate reactants, respectively, which reflects that those catalysts play an important role in reducing the barrier of the hydrogen abstraction reaction of FCHO with OH. Additionally, using conventional transition state theory with Eckart tun- neling correction, the kinetic data demonstrate that the entrance channel X…FCHO+OH (X=H2O, FA, or SA) is significantly more favorable than the pathway X…OH+FCHO. More- over, the rate constants of the reactions of FCHO with OH radical with H2O, FA, or SA introduced are computed to be smaller than that of the naked OH+FCHO reaction because the concentration of the formed X…FCHO or X…OH complex is quite low in the atmosphere.展开更多
The two channels of the CH(3)OH+Cl hydrogen abstraction reaction, leading to the final products CH(2)OH+HCl (i) and CH(3)O+HCl (ii), have been studied by performing ab initio MP2 calculations with the triplet split-va...The two channels of the CH(3)OH+Cl hydrogen abstraction reaction, leading to the final products CH(2)OH+HCl (i) and CH(3)O+HCl (ii), have been studied by performing ab initio MP2 calculations with the triplet split-valence polarization basis sets. For each of the two channels the following simple reaction path is predicted: reactants --> transition state --> intermediate --> products. The previously reported complicated paths(2) calculated without using the IRC technique are criticized. Our calculations indicate that channel (i) is exothermic and has a negligible energy barrier while channel (ii) is endothermic and has a substantial energy barrier. These results imply that channel (i) is favorable, which is in line with experiment.展开更多
The addition and abstraction reactions of OH radical with benzoate anion are investigated by density functional theory calculations that include solvent effects using UB3LYP, UCAM-B3LYP, UmPW1PW91 and UM06-2X function...The addition and abstraction reactions of OH radical with benzoate anion are investigated by density functional theory calculations that include solvent effects using UB3LYP, UCAM-B3LYP, UmPW1PW91 and UM06-2X functionals with the 6-311++G(2d,2p) basis set. Geometry optimizations of the reactants, products and transition state species are performed for the possible reaction paths. For the addition reactions, those targeting the ipso-, ortho-, meta- and para-carbons are predicted to be exoergic. The H-atom abstraction reactions from ortho, meta and para positions are also predicted to be exoergic. On the basis of the rate constants calculated by means of the transition state theory, the H-atom abstraction reaction from the ortho position is determined to be the favored path followed by the ortho OH addition reaction.展开更多
Hydrogen abstraction reaction, H+C2H4 --H2+C2H2 was studied by using A initio SCF method. Ge-ometries were fully optimized at SCF level and energies were computed at STO-3G basis set for reactants and transition state...Hydrogen abstraction reaction, H+C2H4 --H2+C2H2 was studied by using A initio SCF method. Ge-ometries were fully optimized at SCF level and energies were computed at STO-3G basis set for reactants and transition state. Vibrational analysis was performed thereupon. Finally, the rate constant calculations were carried out at different temperatures for all range of reaction temperature according to Eyring's sbwlute reaction rate theory. The calculated activation energy is 12. 68 kcal/mol, lower than observed value (H. S kcal/mol) by 1. 82 kcal/mol only. The agreement of the calculated rate constants with the experiments is satisfactory.展开更多
The hydrogen abstraction reaction of methanol with fluorine atoms can produce HF and CH_(3)O or CH_(2)OH radicals,which are important in the environment,combustion,radiation,and interstellar chemistry.In this work,the...The hydrogen abstraction reaction of methanol with fluorine atoms can produce HF and CH_(3)O or CH_(2)OH radicals,which are important in the environment,combustion,radiation,and interstellar chemistry.In this work,the dynamics of this typical reaction is investigated by the quasi-classical trajectory method based on a recently developed globally accurate full-dimensional potential energy surface.Particularly,the vibrational state distributions of the polyatomic products CH_(3)O and CH_(2)OH are determined by using the normal mode analysis method.It is found that CH_(3)O and CH_(2)OH are dominantly populated in the ground state when the reactants are at the ground ro-vibrational state.The OH stretching mode,torsional mode,H_(2)CO out-of-plane bending mode and their combination bands in the CH_(2)OH product can be effectively excited once the OH stretching mode of the reactant CH_(3)OH is excited to the first vibrationally excited state.Most of the available energy flows into the HF vibrational energy and the translational energy in both channels,while the radical products,CH_(3)O or CH_(2)OH,receive a small amount of energy,consistent with experiment,which is an indication of its spectator nature.展开更多
The three potential surfaces for reactions of the O atom to abstract H atoms from CH2F2 and CH2Cl2 were studied using the ab initio method. The frequencies, geometries and energies of all species are calculated. The b...The three potential surfaces for reactions of the O atom to abstract H atoms from CH2F2 and CH2Cl2 were studied using the ab initio method. The frequencies, geometries and energies of all species are calculated. The best estimates of the heat of reactions are 30.92 KJ/mol and 13.01 KJ/mol, and, the best potential barrier heights for both reactions are calculated to be 74.50 KJ/mol and 67.22 KJ/mol, respectively. the second-order rate coefficients calculated are 2.8721x10(-21) and 4.2522x10(-20) cm(3)/molecule-s at 298 K, respectively.展开更多
The insertion and abstraction reaction mechanisms of singlet and triplet CCl2 with CH3MH (M=O, S) have been studied by using the DFT, NBO and AIM methods. The geometries of reactions, the transition state and products...The insertion and abstraction reaction mechanisms of singlet and triplet CCl2 with CH3MH (M=O, S) have been studied by using the DFT, NBO and AIM methods. The geometries of reactions, the transition state and products were completely optimized by B3LYP/6–311G(d, p). All the energy of the species was obtained at the CCSD(T)/6–311G(d, p) level. The calculated results indicated that the major pathways of the reaction were obtained on the singlet potential energy surface. The singlet CCl2 can not only trigger the insertion reaction with C-H and M-H in four pathways, by which the products P1 [CH3OCHCl2, reaction I(1)], P3[Cl2HCCH2OH, reaction I(2)], P5[CH3SCHCl2, reaction II(1)] and P7[Cl2HCCH2SH, reaction II(2)] are produced respectively, but also abstract M-H, resulting P4 [CH2O+CH2Cl2, reaction I(3)] and P8[CH2S+CH2Cl2, reaction II(3)]. In addition, the important geometries in domain pathways have been studied by AIM and NBO theories.展开更多
The mechanism of the reaction of H with SiHCl_3 has been investigated at highlevel of ab initio molecular orbital theory. Theoretical analysis provides a conclusive evidencethat the main process occurring in this reac...The mechanism of the reaction of H with SiHCl_3 has been investigated at highlevel of ab initio molecular orbital theory. Theoretical analysis provides a conclusive evidencethat the main process occurring in this reaction is the hydrogen abstraction from the Si―H bond,the abstraction of Cl has higher barrier and is difficult to react. The kinetics has been studiedusing canonical variational transition-state theory (CVT) with small curvature tunneling effect(SCT) correction. The rate constants have been calculated over a wide temperature range of 200―3000K. The CVT/SCT rate constants exhibit typical non-Arrhenius behavior, a three-parameterrate-temperature formula is fitted as follows; k( T) = (3.24 x 10^(-19)) T^(2.30) exp( - 250/T) [inunit of mL/(molecule·s). The calculated CVT/SCT rate constants match well with the experimentalvalues.展开更多
文摘The mechanisms and kinetics of the gas phase reactions that the hydrogen atom in formyl fluoride (FCHO) abstracted by OH in the presence of water, formic acid (FA), or sulfuric acid (SA) are theoretically investigated at the CCSD(T)/6-311++G(3df, 3pd)//MO6-2X/6- 311++G(3df, 3pd) level of theory. The calculated results show that the barriers of the transition states involving catalysts are lowered to -2.89, -6.25, and -7.76 kcal/mol from 3.64 kcal/mol with respect to the separate reactants, respectively, which reflects that those catalysts play an important role in reducing the barrier of the hydrogen abstraction reaction of FCHO with OH. Additionally, using conventional transition state theory with Eckart tun- neling correction, the kinetic data demonstrate that the entrance channel X…FCHO+OH (X=H2O, FA, or SA) is significantly more favorable than the pathway X…OH+FCHO. More- over, the rate constants of the reactions of FCHO with OH radical with H2O, FA, or SA introduced are computed to be smaller than that of the naked OH+FCHO reaction because the concentration of the formed X…FCHO or X…OH complex is quite low in the atmosphere.
文摘The two channels of the CH(3)OH+Cl hydrogen abstraction reaction, leading to the final products CH(2)OH+HCl (i) and CH(3)O+HCl (ii), have been studied by performing ab initio MP2 calculations with the triplet split-valence polarization basis sets. For each of the two channels the following simple reaction path is predicted: reactants --> transition state --> intermediate --> products. The previously reported complicated paths(2) calculated without using the IRC technique are criticized. Our calculations indicate that channel (i) is exothermic and has a negligible energy barrier while channel (ii) is endothermic and has a substantial energy barrier. These results imply that channel (i) is favorable, which is in line with experiment.
文摘The addition and abstraction reactions of OH radical with benzoate anion are investigated by density functional theory calculations that include solvent effects using UB3LYP, UCAM-B3LYP, UmPW1PW91 and UM06-2X functionals with the 6-311++G(2d,2p) basis set. Geometry optimizations of the reactants, products and transition state species are performed for the possible reaction paths. For the addition reactions, those targeting the ipso-, ortho-, meta- and para-carbons are predicted to be exoergic. The H-atom abstraction reactions from ortho, meta and para positions are also predicted to be exoergic. On the basis of the rate constants calculated by means of the transition state theory, the H-atom abstraction reaction from the ortho position is determined to be the favored path followed by the ortho OH addition reaction.
文摘Hydrogen abstraction reaction, H+C2H4 --H2+C2H2 was studied by using A initio SCF method. Ge-ometries were fully optimized at SCF level and energies were computed at STO-3G basis set for reactants and transition state. Vibrational analysis was performed thereupon. Finally, the rate constant calculations were carried out at different temperatures for all range of reaction temperature according to Eyring's sbwlute reaction rate theory. The calculated activation energy is 12. 68 kcal/mol, lower than observed value (H. S kcal/mol) by 1. 82 kcal/mol only. The agreement of the calculated rate constants with the experiments is satisfactory.
基金supported by the National Natural Science Foundation of China(No.21973009 to Jun Li)the Chongqing Municipal Natural Science Foundation(No.cstc2019jcyj-msxm X0087 to Jun Li)the support from the Talent Introduction Project of Hubei Polytechnic University(No.21xjz01R)。
文摘The hydrogen abstraction reaction of methanol with fluorine atoms can produce HF and CH_(3)O or CH_(2)OH radicals,which are important in the environment,combustion,radiation,and interstellar chemistry.In this work,the dynamics of this typical reaction is investigated by the quasi-classical trajectory method based on a recently developed globally accurate full-dimensional potential energy surface.Particularly,the vibrational state distributions of the polyatomic products CH_(3)O and CH_(2)OH are determined by using the normal mode analysis method.It is found that CH_(3)O and CH_(2)OH are dominantly populated in the ground state when the reactants are at the ground ro-vibrational state.The OH stretching mode,torsional mode,H_(2)CO out-of-plane bending mode and their combination bands in the CH_(2)OH product can be effectively excited once the OH stretching mode of the reactant CH_(3)OH is excited to the first vibrationally excited state.Most of the available energy flows into the HF vibrational energy and the translational energy in both channels,while the radical products,CH_(3)O or CH_(2)OH,receive a small amount of energy,consistent with experiment,which is an indication of its spectator nature.
文摘The three potential surfaces for reactions of the O atom to abstract H atoms from CH2F2 and CH2Cl2 were studied using the ab initio method. The frequencies, geometries and energies of all species are calculated. The best estimates of the heat of reactions are 30.92 KJ/mol and 13.01 KJ/mol, and, the best potential barrier heights for both reactions are calculated to be 74.50 KJ/mol and 67.22 KJ/mol, respectively. the second-order rate coefficients calculated are 2.8721x10(-21) and 4.2522x10(-20) cm(3)/molecule-s at 298 K, respectively.
基金Supported by the National Natural Science Foundation of China (Grant No. 20335030)Foundation of Education Committee of Gansu Province (Grant No. 0708-11)
文摘The insertion and abstraction reaction mechanisms of singlet and triplet CCl2 with CH3MH (M=O, S) have been studied by using the DFT, NBO and AIM methods. The geometries of reactions, the transition state and products were completely optimized by B3LYP/6–311G(d, p). All the energy of the species was obtained at the CCSD(T)/6–311G(d, p) level. The calculated results indicated that the major pathways of the reaction were obtained on the singlet potential energy surface. The singlet CCl2 can not only trigger the insertion reaction with C-H and M-H in four pathways, by which the products P1 [CH3OCHCl2, reaction I(1)], P3[Cl2HCCH2OH, reaction I(2)], P5[CH3SCHCl2, reaction II(1)] and P7[Cl2HCCH2SH, reaction II(2)] are produced respectively, but also abstract M-H, resulting P4 [CH2O+CH2Cl2, reaction I(3)] and P8[CH2S+CH2Cl2, reaction II(3)]. In addition, the important geometries in domain pathways have been studied by AIM and NBO theories.
基金ProjectsupportedbytheResearchFundfortheDoctoralProgramoftheMinistryofEducationofChina (No .19990 42 2 0 1)
文摘The mechanism of the reaction of H with SiHCl_3 has been investigated at highlevel of ab initio molecular orbital theory. Theoretical analysis provides a conclusive evidencethat the main process occurring in this reaction is the hydrogen abstraction from the Si―H bond,the abstraction of Cl has higher barrier and is difficult to react. The kinetics has been studiedusing canonical variational transition-state theory (CVT) with small curvature tunneling effect(SCT) correction. The rate constants have been calculated over a wide temperature range of 200―3000K. The CVT/SCT rate constants exhibit typical non-Arrhenius behavior, a three-parameterrate-temperature formula is fitted as follows; k( T) = (3.24 x 10^(-19)) T^(2.30) exp( - 250/T) [inunit of mL/(molecule·s). The calculated CVT/SCT rate constants match well with the experimentalvalues.