针对模块化多电平统一电能质量调节器(modular multilevel unified power quality conditioner, MMC-UPQC)六桥臂结构下的单相桥臂故障问题,提出了一种五桥臂拓扑,这种新型拓扑可实现故障情况下的电能质量补偿。首先,对MMC-UPQC串并联...针对模块化多电平统一电能质量调节器(modular multilevel unified power quality conditioner, MMC-UPQC)六桥臂结构下的单相桥臂故障问题,提出了一种五桥臂拓扑,这种新型拓扑可实现故障情况下的电能质量补偿。首先,对MMC-UPQC串并联侧的数学模型进行分析,提出了一种复合模型预测控制(hybrid model predictive control,H-MPC),所提控制方法结合了有限集模型预测控制(finite-control-set model predictive control, FCS-MPC)以及快速模型预测控制(fast model predictive control, F-MPC)。然后,通过构建两侧独立的价值函数减少了控制方法的计算量,同时也实现了五桥臂解耦控制。最后,相比传统线性(例如PI)和非线性(例如无源控制passivity-based control,PBC)的控制策略,所提复合模型预测控制在电压补偿、负序电压抑制以及谐波电流补偿等方面具有一定优势,并在一定程度上避免了复杂的参数整定及坐标变化环节。仿真实验结果证明了所提控制方法的可行性和优越性。展开更多
A Cascade H Bridge (CHB) is evaluated for both electric vehicle motor traction control and off-vehicle charging against the Power ElectronicsUK Automotive Challenge for cost and mass for the year 2035. By combining th...A Cascade H Bridge (CHB) is evaluated for both electric vehicle motor traction control and off-vehicle charging against the Power ElectronicsUK Automotive Challenge for cost and mass for the year 2035. By combining the power electronics with batteries using low-voltage MOSFET transistors in a series cascade arrangement the cost and mass targets could be met 12 years earlier (in 2023 and 20 times lighter if an application specific integrated circuit (ASIC) is used. A 200 kW peak reference car was used to evaluate cost and mass benefits using four different topologies of power electronics. Vehicle installation is shown to be simplified as only passive cooling is required removing the need for liquid cooling systems and the arrangement is inherently safe;no high voltages are present when the vehicle is stationary. The inherently higher efficiency of CHB increases vehicle range. The converter with integrated batteries can also behave as an integrated on-board battery charger delivering additional off-vehicle benefits by removing the need for costly external chargers.展开更多
文摘针对模块化多电平统一电能质量调节器(modular multilevel unified power quality conditioner, MMC-UPQC)六桥臂结构下的单相桥臂故障问题,提出了一种五桥臂拓扑,这种新型拓扑可实现故障情况下的电能质量补偿。首先,对MMC-UPQC串并联侧的数学模型进行分析,提出了一种复合模型预测控制(hybrid model predictive control,H-MPC),所提控制方法结合了有限集模型预测控制(finite-control-set model predictive control, FCS-MPC)以及快速模型预测控制(fast model predictive control, F-MPC)。然后,通过构建两侧独立的价值函数减少了控制方法的计算量,同时也实现了五桥臂解耦控制。最后,相比传统线性(例如PI)和非线性(例如无源控制passivity-based control,PBC)的控制策略,所提复合模型预测控制在电压补偿、负序电压抑制以及谐波电流补偿等方面具有一定优势,并在一定程度上避免了复杂的参数整定及坐标变化环节。仿真实验结果证明了所提控制方法的可行性和优越性。
文摘针对模块化多电平换流器(Modular Multilevel Converter,MMC)的研究主要集中在三相系统,很少有文献对单相MMC展开分析研究。文章分析了一种单相H桥型MMC的拓扑结构,建立其数学模型;通过构造和实际交流量成正交关系的虚拟交流量,提出一种基于αβ坐标系的直接功率控制(Direct Power Control,DPC)策略;单相MMC桥臂电流中的二次分量将流入直流侧,为此利用准比例谐振控制器设计环流抑制器;最后在PSCAD/EMTDC中搭建仿真模型,结果验证了所提出控制策略的有效性。
文摘A Cascade H Bridge (CHB) is evaluated for both electric vehicle motor traction control and off-vehicle charging against the Power ElectronicsUK Automotive Challenge for cost and mass for the year 2035. By combining the power electronics with batteries using low-voltage MOSFET transistors in a series cascade arrangement the cost and mass targets could be met 12 years earlier (in 2023 and 20 times lighter if an application specific integrated circuit (ASIC) is used. A 200 kW peak reference car was used to evaluate cost and mass benefits using four different topologies of power electronics. Vehicle installation is shown to be simplified as only passive cooling is required removing the need for liquid cooling systems and the arrangement is inherently safe;no high voltages are present when the vehicle is stationary. The inherently higher efficiency of CHB increases vehicle range. The converter with integrated batteries can also behave as an integrated on-board battery charger delivering additional off-vehicle benefits by removing the need for costly external chargers.