Data from July 2006 to June 2008 observed at SACOL (Semi-Arid Climate and Environment Observatory of Lanzhou University, 35.946°N, 104.137°E, elev. 1961 m), a semi-arid site in Northwest China, are used to...Data from July 2006 to June 2008 observed at SACOL (Semi-Arid Climate and Environment Observatory of Lanzhou University, 35.946°N, 104.137°E, elev. 1961 m), a semi-arid site in Northwest China, are used to study seasonal variability of soil moisture, along with surface albedo and other soil thermal parameters, such as heat capacity, thermal conductivity and thermal diffusivity, and their relationships to soil moisture content. The results indicate that surface albedo decreases with increases in soil moisture content, showing a typical exponential relation between the surface albedo and the soil moisture. The heat capacity, the soil thermal diffusivity, and soil thermal conductivity show large variations between Julian day 90-212 and 450-578. The soil thermal conductivity is found to increase as a power function of soil moisture. Soil heat capacity and soil thermal diffusivity increase with increases in soil moisture. The SACOL observed soil moisture are also used to validate the AMSR-E/AQUA retrieved soil moisture and there is good agreement between them. The analysis of the relationship between satellite retrieved soil moisture and precipitation suggests that the variability of soil moisture depends on the variation of precipitation over the Loess Plateau.展开更多
In this study,in-situ soil moisture measurements are used to evaluate the accuracy of three AMSR-E soil moisture prod ucts from NASA(National Aeronautics and Space Administration),JAXA(Japanese Aerospace Exploration A...In this study,in-situ soil moisture measurements are used to evaluate the accuracy of three AMSR-E soil moisture prod ucts from NASA(National Aeronautics and Space Administration),JAXA(Japanese Aerospace Exploration Agency)and VUA(Vrije University Amsterdam and NASA)over Maqu County,Source Area of the Yellow River(SAYR),China.Re sults show that the VUA soil moisture product performs the best among the three AMSR-E soil moisture products in the study area,with a minimum RMSE(root mean square error)of 0.08(0.10)m3/m3 and smallest absolute error of 0.07(0.08)m3/m3 at the grassland area with ascending(descending)data.Therefore,the VUA soil moisture product is used to describe the spatial variation of soil moisture during the 2010 growing season over SAYR.The VUA soil moisture product shows that soil moisture presents a declining trend from east south(0.42 m3/m3)to west north(0.23 m3/m3),with good agreement with a general precipitation distribution.The center of SAYR presents extreme wetness(0.60 m3/m3)dur ing the whole study period,especially in July,while the head of SAYR presents a high level soil moisture(0.23 m3/m3)in July,August and September.展开更多
To reduce the impact of rainfall variability on lowland rice yields, Burkina Faso state develops lowlands for small rice farmers. However, the high cost of these infrastructures makes impossible to duplicate them to s...To reduce the impact of rainfall variability on lowland rice yields, Burkina Faso state develops lowlands for small rice farmers. However, the high cost of these infrastructures makes impossible to duplicate them to satisfy the needs which are enormous. The Smart-Valley technology which is actually popularized in certain coastal countries of West Africa would therefore be a boon to increase the productivity of the Sudanese lowlands if it well regulates runoff. The object of this study was therefore to know if smart valley technology could increase soil moisture in order to mitigate the impact of drought’s pockets on rice cultivation in the Sudanese lowlands. The experiment takes place in three lowlands during the rainy seasons 2018 and 2019. The climatic data comes from the meteorological stations in the study areas as well as those installed on the sites. The infiltration measurements were carried out using the double Muntz ring. The soil moisture measurement device consisted of a smart valley area of 5 ha and an undeveloped area of 5 ha per site. Sixteen tubes were installed per lowland allowing the humidity to be measured at a depth of 10, 20, 30, 40 cm using a probe. Four rice varieties, Orylux6, FKR62N, FKR19 and FKR64 were tested on plots of 0.25 ha per variety in the smart valley and undeveloped parts. The results showed that the humidity level was 12% higher in the smart-valley plots throughout the cycle compared to the unmanaged area. In addition, humidity decreases rapidly in unmanaged plots as rain becomes increasingly scarce. Finally, the smart-valley development allowed an average increase in rice yields of 21% compared to the average yield of undeveloped plots.展开更多
Multipurpose tree species (MPTs) were studied in an agroforestry arboretum under subtropical humid climate in Northeast India. Out of 12 MPTs planted under agroforestry systems, Acacia auriculiformis in spacing of 2...Multipurpose tree species (MPTs) were studied in an agroforestry arboretum under subtropical humid climate in Northeast India. Out of 12 MPTs planted under agroforestry systems, Acacia auriculiformis in spacing of 2 m × 2 m (2500 stems·hm^-2) could have the potentiality to meet the timber/fuelwood requirement due to its high wood production of 635 m^3·hm^-2 with mean annual increment (MAI) of 2.54×10^-2 m^3.treel.a^-1 in a short rotation period of 10 years. Thus, A. auriculiformis is a short rotation forest tree species suitable to grow in subtropical humid climate. On the other hand, at 16 years of age, Eucalyptus hybrid and Michelia champaca in spacing of 3 m × 3 m (1111 stems.hm^2) produced appreciably high timber volume of 315 m^3.hm^-2 and 165 m^3.hm^-2 with MAI of 1.77×10^-2 m^3.tree^-1·a^-1 and 0.92×10.2 m^3.tree^-1.a^-1, respectively. At 16 years of age, Gmelina arborea produced a timber volume of 147 m^3.hm^-2 with MAI of 1.47×10^-2 m^3.tree^-1.a^-1 followed by Samania saman (140 m^3.hm^-2), Albizziaprocera (113 m^3·hm^-2) and Tectona grandis (79 m3.hm^-2) with MAI of 1.40, 1.13 and 0.78 × 10^-2 m^3 .tree^-1a^-1, respectively in 4 m × 4 m spacing (625 stems.hm^-2). Gliricidia maculata and Leucaena leucocephala could be used as live fences around the farm boundary to supply their N-rich leaves for mulch as well as manure to crops. In agroforestry arboretum, direct seeded upland rice (Oryza sativa - variety, AR-11), groundnut (Arachis hypogaea - variety, JL-24) and sesamum (Sesamum indicum - variety, B-67) were grown during the initial period upto 8 years of tree establishment. Under other MPTs, there was a reduction in crop productivity as compared to open space. After 8 years of tree establishment, horti-silvi and silvi-pastoral systems were developed and pineapple (Ananas comosus - variety Queen), turmeric (Curcuma longa -variety RCT -1) and cowpea (Vigna sinensis - variety Pusa Barsati) as forage crop were raised. The productivity of pineapple, turmeric and cowpea was comparatively high under Azadirachta indica. The productivity of horticultural and forage crops in association with trees such as G. arborea, A. procera, S. saman, T. grandis and M. champaca of high timber value could be harnessed as viable agroforestry systems. Changes in soil properties were also monitored. Amelioration of soil acidity, increase in soil organic carbon, and enhanced humification of soil humus, high nutrient availability, low soil erodibility and high surface soil (0-15 cm) moisture availability were noted in soils under MPTs.展开更多
Land use change may influence a variety of natural and ecological processes, including soil nutrient, soil moisture, soil erosion, land productivity and biodiversity. In this paper, 9 typical land use patterns sustain...Land use change may influence a variety of natural and ecological processes, including soil nutrient, soil moisture, soil erosion, land productivity and biodiversity. In this paper, 9 typical land use patterns sustainable 15- 20 years have been chosen to study the effect of different land use patterns on soil nutrient, soil erosion, soil moisture, saline and so on. We drew conclusions as follows: Firstly, it is clear of the effect of land use change on soil. Land use change results in the decline of soil nutrient and erosion rate, but the increase of land productivity; secondly, the erosion rate and the rate of vegetation cover is the subtractive correlativity. It reflects the effect of soil erosion on land productivity. It is clear of the positive correlativity between land productivity and soil moisture and explains the role of land surface vegetation to preventing aridity in the northwestern China; lastly, it is feasible to develop animal husbandry properly in arid region. The topgallant land use pattern is the combination of forest and meadow in arid region. The rational land use may prevent or weaken the intensity of soil erosion in a certain extent. Therefore, activities accorded with ecological principal such as readjustment of land use structure, rational reclamation along with adoption of prevention and control measures can reverse land degradation process.展开更多
Deficit irrigation is critical to global food production,particularly in arid and semi-arid regions with low precipitation.Given water shortage has threatened agricultural sustainability under the dry-land farming sys...Deficit irrigation is critical to global food production,particularly in arid and semi-arid regions with low precipitation.Given water shortage has threatened agricultural sustainability under the dry-land farming system in China,there is an urgent need to develop effective water-saving technologies.We carried out a field study under two cultivation techniques:(1) the ridge and furrow cultivation model(R);and(2) the conventional flat farming model(F),and three simulated precipitation levels(1,275 mm;2,200 mm;3,125 mm) with two deficit irrigation levels(150 and 75 mm).We demonstrated that under the ridge furrow(R) model,rainfall harvesting planting under 150 mm deficit irrigation combined with 200 mm simulated precipitation can considerably increase net photosynthesis rate(P_(n)),quantum yield of PSII(ΦPSⅡ),electron transport rate(ETR),performance index of photosynthetic PSII(F_(v)/F_(m)′),and transformation energy potential of PSII(F_(v)/F_(o)).In addition,during the jointing,anthesis and grain-filling stages,the grain and biomass yield in the R model are 18.9 and 11.1% higher than those in the flat cultivation model,respectively,primarily due to improved soil water contents.The winter wheat fluorescence parameters were significantly positively associated with the photosynthesis,biomass and wheat production.The result suggests that the R cultivation model with irrigation of 150 mm and simulated precipitation of 200 mm is an effective planting method for enhancing P_(n),biomass,wheat production,and chlorophyll fluorescence parameters in dry-land farming areas.展开更多
Soil moisture(SM)plays a crucial role in the dynamics of coupled atmosphere,water,energy,and carbon cycles.In this study,the spatiotemporal distribution and variations of SM in the Mongolian Plateau were investigated ...Soil moisture(SM)plays a crucial role in the dynamics of coupled atmosphere,water,energy,and carbon cycles.In this study,the spatiotemporal distribution and variations of SM in the Mongolian Plateau were investigated for the period of 1982-2018 based on four gridded SM datasets.Taking the observed SM from 33 monitoring stations as a reference,the reliability of these four gridded products was validated,and the three-cornered hat(TCH)method was also applied to evaluate their uncertainties.Major results indicated that all these four products underestimated the SM in this region at different levels.The ERA-Interim SM performed much better than other three products,with a higher R of 0.53 and lower ubRMSE of 0.0378 m^(3)·m^(−3).Except for ECV,the surface SM exhibited a decreasing trend at−0.0004 to−0.0008 m^(3)·m^(−3)/decade in the warm season(from April to October)over the past 37 years.The greatest decreases in SM occurred in the summer season.Precipitation change plays a more important role in explaining the variations of SM than temperature reported by partial correlation analysis.The results of this study will benefit our understanding of the climate change effects and the protection of the ecological systems in this region.展开更多
This study investigates the statistical relationship between climatic variables and aspects of cotton production (G. barbadense), and the effects of climatic factors prevailing prior to flowering or subsequent to boll...This study investigates the statistical relationship between climatic variables and aspects of cotton production (G. barbadense), and the effects of climatic factors prevailing prior to flowering or subsequent to boll setting on flower and boll production and retention in cotton. The effects of specific climatic factors during both pre-?and post-anthesis periods on boll production and retention are mostly unknown. However, by determining the relationship of climatic factors with flower and boll production and retention, the overall level of production can be possibly predicted. Thus, an understanding of these relationships may help physiologists determine control mechanisms of production in cotton plants. Also, the study covers the predicted effects of climatic factors during convenient intervals (in days) on cotton flower and boll production compared with daily observations. Further, cotton flower and boll production as affected by climatic factors and soil moisture status has been considered. Evaporation, sunshine duration, relative humidity, surface soil temperature at 1800 h, and maximum air temperature, are the important climatic factors that significantly affect flower and boll production. The least important variables were found to be surface soil temperature at 600 h and minimum temperature. The five-day interval was found to be more adequately and sensibly related to yield parameters. Evaporation, minimum humidity and sunshine duration were the most effective climatic factors during preceding and succeeding periods on boll production and retention. There was a negative correlation between flower number and boll production and either evaporation or sunshine duration, while that correlation with minimum relative humidity was positive. The soil moisture status showed low and insignificant correlation with flower and boll production. Higher minimum relative humidity, short period of sunshine duration, and low temperatures enhanced flower and boll formation.展开更多
Given the short duration of growing season in the Arctic, a strong correlation between plant productivity and growing season length (GSL) is conventionally assumed. Will this assumption hold true under a warming clima...Given the short duration of growing season in the Arctic, a strong correlation between plant productivity and growing season length (GSL) is conventionally assumed. Will this assumption hold true under a warming climate? In this study, we addressed the question by investigating the relationship between net primary productivity of leaves (NPP<sub>leaf</sub>) and GSL for various tundra ecosystems. We quantified NPP<sub>leaf</sub> and GSL using long-term satellite data and field measurements. Our results indicated that the relationship was not significant (i.e., decoupled) for 44% to 64% of tundra classes in the southern Canadian Arctic, but significant for all classes in the northern Canadian Arctic. To better understand the causes of the decoupling, we further decomposed the relationship into two components: the correspondence of interannual variations and the agreement of long- term trends. We found that the longer the mean GSL for a tundra class, the poorer the correspondence between their interannual variations. Soil moisture limitation further decoupled the relationship by deteriorating the agreement of long-term trends. Consequently, the decoupling between NPP<sub>leaf</sub> and GSL would be more likely to occur under a warming climate if the tundra class had a mean GSL > 116 (or 123) days with a dry (or moist) soil moisture regime.展开更多
Greenhouse gases are known to play an important role in global warming.In this study,we determined the effects of selected soil and climate variables on nitrous oxide(N2O),methane(CH4),and carbon dioxide(CO2)emissions...Greenhouse gases are known to play an important role in global warming.In this study,we determined the effects of selected soil and climate variables on nitrous oxide(N2O),methane(CH4),and carbon dioxide(CO2)emissions from a tropical grassland fertilized with chicken slurry,swine slurry,cattle slurry,and cattle compost.Cumulative N2O emissions did not differ between treatments and varied from 29.26 to 32.85 mg N m^-2.Similarly,cumulative CH4 emissions were not significantly different among the treatments and ranged from 6.34 to 57.73 mg CH4 m^-2.Slurry and compost application induced CO2 emissions that were significantly different from those in the control treatment.The CH4 conversion factors measured were 0.21%,1.39%,4.39%,and 5.07%for cattle compost,chicken slurry,swine slurry,and cattle slurry,respectively,differing from the recommendations of the Intergovernmental Panel on Climate Change(IPCC).The fraction of added Nemitted as N2O was 0.39%,which was lower than the IPCC default value of 2%.Our findings suggest that N2O emissions could be mitigated by replacing synthetic fertilizer sources with either biofertilizer or compost.Our results indicate the following:N2O emission was mainly controlled by soil temperature,followed by soil moisture and then soil NH^"content;CH4 fluxes were mainly controlled by soil moisture and chamber headspace temperature;and CO2 fluxes were mainly controlled by chamber headspace temperature and soil moisture.展开更多
基金supported bythe National Natural Science Foundation of China un-der Grants Nos40725015 and 40633017the Na-tional Basic Research Program of China under Grant No2006CB400501
文摘Data from July 2006 to June 2008 observed at SACOL (Semi-Arid Climate and Environment Observatory of Lanzhou University, 35.946°N, 104.137°E, elev. 1961 m), a semi-arid site in Northwest China, are used to study seasonal variability of soil moisture, along with surface albedo and other soil thermal parameters, such as heat capacity, thermal conductivity and thermal diffusivity, and their relationships to soil moisture content. The results indicate that surface albedo decreases with increases in soil moisture content, showing a typical exponential relation between the surface albedo and the soil moisture. The heat capacity, the soil thermal diffusivity, and soil thermal conductivity show large variations between Julian day 90-212 and 450-578. The soil thermal conductivity is found to increase as a power function of soil moisture. Soil heat capacity and soil thermal diffusivity increase with increases in soil moisture. The SACOL observed soil moisture are also used to validate the AMSR-E/AQUA retrieved soil moisture and there is good agreement between them. The analysis of the relationship between satellite retrieved soil moisture and precipitation suggests that the variability of soil moisture depends on the variation of precipitation over the Loess Plateau.
基金supported in part by the Programs of National Natural Science Foundation of China (41675157, 91537212)
文摘In this study,in-situ soil moisture measurements are used to evaluate the accuracy of three AMSR-E soil moisture prod ucts from NASA(National Aeronautics and Space Administration),JAXA(Japanese Aerospace Exploration Agency)and VUA(Vrije University Amsterdam and NASA)over Maqu County,Source Area of the Yellow River(SAYR),China.Re sults show that the VUA soil moisture product performs the best among the three AMSR-E soil moisture products in the study area,with a minimum RMSE(root mean square error)of 0.08(0.10)m3/m3 and smallest absolute error of 0.07(0.08)m3/m3 at the grassland area with ascending(descending)data.Therefore,the VUA soil moisture product is used to describe the spatial variation of soil moisture during the 2010 growing season over SAYR.The VUA soil moisture product shows that soil moisture presents a declining trend from east south(0.42 m3/m3)to west north(0.23 m3/m3),with good agreement with a general precipitation distribution.The center of SAYR presents extreme wetness(0.60 m3/m3)dur ing the whole study period,especially in July,while the head of SAYR presents a high level soil moisture(0.23 m3/m3)in July,August and September.
文摘To reduce the impact of rainfall variability on lowland rice yields, Burkina Faso state develops lowlands for small rice farmers. However, the high cost of these infrastructures makes impossible to duplicate them to satisfy the needs which are enormous. The Smart-Valley technology which is actually popularized in certain coastal countries of West Africa would therefore be a boon to increase the productivity of the Sudanese lowlands if it well regulates runoff. The object of this study was therefore to know if smart valley technology could increase soil moisture in order to mitigate the impact of drought’s pockets on rice cultivation in the Sudanese lowlands. The experiment takes place in three lowlands during the rainy seasons 2018 and 2019. The climatic data comes from the meteorological stations in the study areas as well as those installed on the sites. The infiltration measurements were carried out using the double Muntz ring. The soil moisture measurement device consisted of a smart valley area of 5 ha and an undeveloped area of 5 ha per site. Sixteen tubes were installed per lowland allowing the humidity to be measured at a depth of 10, 20, 30, 40 cm using a probe. Four rice varieties, Orylux6, FKR62N, FKR19 and FKR64 were tested on plots of 0.25 ha per variety in the smart valley and undeveloped parts. The results showed that the humidity level was 12% higher in the smart-valley plots throughout the cycle compared to the unmanaged area. In addition, humidity decreases rapidly in unmanaged plots as rain becomes increasingly scarce. Finally, the smart-valley development allowed an average increase in rice yields of 21% compared to the average yield of undeveloped plots.
文摘Multipurpose tree species (MPTs) were studied in an agroforestry arboretum under subtropical humid climate in Northeast India. Out of 12 MPTs planted under agroforestry systems, Acacia auriculiformis in spacing of 2 m × 2 m (2500 stems·hm^-2) could have the potentiality to meet the timber/fuelwood requirement due to its high wood production of 635 m^3·hm^-2 with mean annual increment (MAI) of 2.54×10^-2 m^3.treel.a^-1 in a short rotation period of 10 years. Thus, A. auriculiformis is a short rotation forest tree species suitable to grow in subtropical humid climate. On the other hand, at 16 years of age, Eucalyptus hybrid and Michelia champaca in spacing of 3 m × 3 m (1111 stems.hm^2) produced appreciably high timber volume of 315 m^3.hm^-2 and 165 m^3.hm^-2 with MAI of 1.77×10^-2 m^3.tree^-1·a^-1 and 0.92×10.2 m^3.tree^-1.a^-1, respectively. At 16 years of age, Gmelina arborea produced a timber volume of 147 m^3.hm^-2 with MAI of 1.47×10^-2 m^3.tree^-1.a^-1 followed by Samania saman (140 m^3.hm^-2), Albizziaprocera (113 m^3·hm^-2) and Tectona grandis (79 m3.hm^-2) with MAI of 1.40, 1.13 and 0.78 × 10^-2 m^3 .tree^-1a^-1, respectively in 4 m × 4 m spacing (625 stems.hm^-2). Gliricidia maculata and Leucaena leucocephala could be used as live fences around the farm boundary to supply their N-rich leaves for mulch as well as manure to crops. In agroforestry arboretum, direct seeded upland rice (Oryza sativa - variety, AR-11), groundnut (Arachis hypogaea - variety, JL-24) and sesamum (Sesamum indicum - variety, B-67) were grown during the initial period upto 8 years of tree establishment. Under other MPTs, there was a reduction in crop productivity as compared to open space. After 8 years of tree establishment, horti-silvi and silvi-pastoral systems were developed and pineapple (Ananas comosus - variety Queen), turmeric (Curcuma longa -variety RCT -1) and cowpea (Vigna sinensis - variety Pusa Barsati) as forage crop were raised. The productivity of pineapple, turmeric and cowpea was comparatively high under Azadirachta indica. The productivity of horticultural and forage crops in association with trees such as G. arborea, A. procera, S. saman, T. grandis and M. champaca of high timber value could be harnessed as viable agroforestry systems. Changes in soil properties were also monitored. Amelioration of soil acidity, increase in soil organic carbon, and enhanced humification of soil humus, high nutrient availability, low soil erodibility and high surface soil (0-15 cm) moisture availability were noted in soils under MPTs.
基金Under the auspices of Sino British Cooperation Project (SHA0992 259)and the National Natural Science Foundation of China(498
文摘Land use change may influence a variety of natural and ecological processes, including soil nutrient, soil moisture, soil erosion, land productivity and biodiversity. In this paper, 9 typical land use patterns sustainable 15- 20 years have been chosen to study the effect of different land use patterns on soil nutrient, soil erosion, soil moisture, saline and so on. We drew conclusions as follows: Firstly, it is clear of the effect of land use change on soil. Land use change results in the decline of soil nutrient and erosion rate, but the increase of land productivity; secondly, the erosion rate and the rate of vegetation cover is the subtractive correlativity. It reflects the effect of soil erosion on land productivity. It is clear of the positive correlativity between land productivity and soil moisture and explains the role of land surface vegetation to preventing aridity in the northwestern China; lastly, it is feasible to develop animal husbandry properly in arid region. The topgallant land use pattern is the combination of forest and meadow in arid region. The rational land use may prevent or weaken the intensity of soil erosion in a certain extent. Therefore, activities accorded with ecological principal such as readjustment of land use structure, rational reclamation along with adoption of prevention and control measures can reverse land degradation process.
基金supported by the National Key Technologies R&D Program of China (2012BAD09B03)the China Postdoctoral Science Foundation Project Funding (2018M642614)+2 种基金the Special Fund for Agro-scientific Research, China (201303104)the Natural Science Foundation of Shandong Province, China (ZR2017ZB0422)the “Taishan Scholar” Project of Shandong Province, China。
文摘Deficit irrigation is critical to global food production,particularly in arid and semi-arid regions with low precipitation.Given water shortage has threatened agricultural sustainability under the dry-land farming system in China,there is an urgent need to develop effective water-saving technologies.We carried out a field study under two cultivation techniques:(1) the ridge and furrow cultivation model(R);and(2) the conventional flat farming model(F),and three simulated precipitation levels(1,275 mm;2,200 mm;3,125 mm) with two deficit irrigation levels(150 and 75 mm).We demonstrated that under the ridge furrow(R) model,rainfall harvesting planting under 150 mm deficit irrigation combined with 200 mm simulated precipitation can considerably increase net photosynthesis rate(P_(n)),quantum yield of PSII(ΦPSⅡ),electron transport rate(ETR),performance index of photosynthetic PSII(F_(v)/F_(m)′),and transformation energy potential of PSII(F_(v)/F_(o)).In addition,during the jointing,anthesis and grain-filling stages,the grain and biomass yield in the R model are 18.9 and 11.1% higher than those in the flat cultivation model,respectively,primarily due to improved soil water contents.The winter wheat fluorescence parameters were significantly positively associated with the photosynthesis,biomass and wheat production.The result suggests that the R cultivation model with irrigation of 150 mm and simulated precipitation of 200 mm is an effective planting method for enhancing P_(n),biomass,wheat production,and chlorophyll fluorescence parameters in dry-land farming areas.
基金supported by Natural Science Foundation of Inner Mongolia:[Grant Number 2020BS03042,2020BS04009]the National Natural Science Foundation of China:[Grant Number 41861014]+1 种基金the Open Project of Remote Sensing and Geographic Information System Application Laboratory,State Key Laboratory of Xinjiang Uygur Autonomous Region:[Grant Number 112/21K20190016]the Research Start-up Fund Project for Introducing Talents:[Grant Number 112/1004031904,112/5909001803].
文摘Soil moisture(SM)plays a crucial role in the dynamics of coupled atmosphere,water,energy,and carbon cycles.In this study,the spatiotemporal distribution and variations of SM in the Mongolian Plateau were investigated for the period of 1982-2018 based on four gridded SM datasets.Taking the observed SM from 33 monitoring stations as a reference,the reliability of these four gridded products was validated,and the three-cornered hat(TCH)method was also applied to evaluate their uncertainties.Major results indicated that all these four products underestimated the SM in this region at different levels.The ERA-Interim SM performed much better than other three products,with a higher R of 0.53 and lower ubRMSE of 0.0378 m^(3)·m^(−3).Except for ECV,the surface SM exhibited a decreasing trend at−0.0004 to−0.0008 m^(3)·m^(−3)/decade in the warm season(from April to October)over the past 37 years.The greatest decreases in SM occurred in the summer season.Precipitation change plays a more important role in explaining the variations of SM than temperature reported by partial correlation analysis.The results of this study will benefit our understanding of the climate change effects and the protection of the ecological systems in this region.
文摘This study investigates the statistical relationship between climatic variables and aspects of cotton production (G. barbadense), and the effects of climatic factors prevailing prior to flowering or subsequent to boll setting on flower and boll production and retention in cotton. The effects of specific climatic factors during both pre-?and post-anthesis periods on boll production and retention are mostly unknown. However, by determining the relationship of climatic factors with flower and boll production and retention, the overall level of production can be possibly predicted. Thus, an understanding of these relationships may help physiologists determine control mechanisms of production in cotton plants. Also, the study covers the predicted effects of climatic factors during convenient intervals (in days) on cotton flower and boll production compared with daily observations. Further, cotton flower and boll production as affected by climatic factors and soil moisture status has been considered. Evaporation, sunshine duration, relative humidity, surface soil temperature at 1800 h, and maximum air temperature, are the important climatic factors that significantly affect flower and boll production. The least important variables were found to be surface soil temperature at 600 h and minimum temperature. The five-day interval was found to be more adequately and sensibly related to yield parameters. Evaporation, minimum humidity and sunshine duration were the most effective climatic factors during preceding and succeeding periods on boll production and retention. There was a negative correlation between flower number and boll production and either evaporation or sunshine duration, while that correlation with minimum relative humidity was positive. The soil moisture status showed low and insignificant correlation with flower and boll production. Higher minimum relative humidity, short period of sunshine duration, and low temperatures enhanced flower and boll formation.
文摘Given the short duration of growing season in the Arctic, a strong correlation between plant productivity and growing season length (GSL) is conventionally assumed. Will this assumption hold true under a warming climate? In this study, we addressed the question by investigating the relationship between net primary productivity of leaves (NPP<sub>leaf</sub>) and GSL for various tundra ecosystems. We quantified NPP<sub>leaf</sub> and GSL using long-term satellite data and field measurements. Our results indicated that the relationship was not significant (i.e., decoupled) for 44% to 64% of tundra classes in the southern Canadian Arctic, but significant for all classes in the northern Canadian Arctic. To better understand the causes of the decoupling, we further decomposed the relationship into two components: the correspondence of interannual variations and the agreement of long- term trends. We found that the longer the mean GSL for a tundra class, the poorer the correspondence between their interannual variations. Soil moisture limitation further decoupled the relationship by deteriorating the agreement of long-term trends. Consequently, the decoupling between NPP<sub>leaf</sub> and GSL would be more likely to occur under a warming climate if the tundra class had a mean GSL > 116 (or 123) days with a dry (or moist) soil moisture regime.
基金This work was funded by the Sao Paulo Research Foundation(FAPESP),Brazil(Nos.2012/06718-8 and 2017/11274-5).
文摘Greenhouse gases are known to play an important role in global warming.In this study,we determined the effects of selected soil and climate variables on nitrous oxide(N2O),methane(CH4),and carbon dioxide(CO2)emissions from a tropical grassland fertilized with chicken slurry,swine slurry,cattle slurry,and cattle compost.Cumulative N2O emissions did not differ between treatments and varied from 29.26 to 32.85 mg N m^-2.Similarly,cumulative CH4 emissions were not significantly different among the treatments and ranged from 6.34 to 57.73 mg CH4 m^-2.Slurry and compost application induced CO2 emissions that were significantly different from those in the control treatment.The CH4 conversion factors measured were 0.21%,1.39%,4.39%,and 5.07%for cattle compost,chicken slurry,swine slurry,and cattle slurry,respectively,differing from the recommendations of the Intergovernmental Panel on Climate Change(IPCC).The fraction of added Nemitted as N2O was 0.39%,which was lower than the IPCC default value of 2%.Our findings suggest that N2O emissions could be mitigated by replacing synthetic fertilizer sources with either biofertilizer or compost.Our results indicate the following:N2O emission was mainly controlled by soil temperature,followed by soil moisture and then soil NH^"content;CH4 fluxes were mainly controlled by soil moisture and chamber headspace temperature;and CO2 fluxes were mainly controlled by chamber headspace temperature and soil moisture.