期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
RHS-CNN:一种基于正则化层次Softmax的CNN文本分类模型
被引量:
15
1
作者
王勇
何养明
+1 位作者
陈荟西
黎春
《重庆理工大学学报(自然科学)》
CAS
北大核心
2020年第5期187-195,共9页
传统的卷积神经网络分类模型(CNN)的输出层采用扁平式架构的标准Softmax,在数据量较大、类别较多的文本分类任务中计算复杂度高,训练耗时长;而基于霍夫曼树(Huffman tree)构建的改进算法--层次Softmax(hierarchical softmax,H-Softmax)...
传统的卷积神经网络分类模型(CNN)的输出层采用扁平式架构的标准Softmax,在数据量较大、类别较多的文本分类任务中计算复杂度高,训练耗时长;而基于霍夫曼树(Huffman tree)构建的改进算法--层次Softmax(hierarchical softmax,H-Softmax)能极大地提高训练速度,但由于加入了大量的节点参数,使得优化难度增加,优化需要更长的迭代步,且容易过拟合,继而影响模型的拟合速度和分类效果。为此,提出了改进算法模型RHS-CNN(regularization hierarchical softmax CNN),采用正则化的方法,对H-Softmax的节点参数进行约束,避免过拟合,增强模型的泛化能力。实验分析结果表明:所提出的方法在相应评价指标上相对Softmax、H-Softmax有着一定的提升。
展开更多
关键词
文本分类
正则化
h-softmax
RHS-CNN
下载PDF
职称材料
题名
RHS-CNN:一种基于正则化层次Softmax的CNN文本分类模型
被引量:
15
1
作者
王勇
何养明
陈荟西
黎春
机构
重庆理工大学计算机科学与工程学院
出处
《重庆理工大学学报(自然科学)》
CAS
北大核心
2020年第5期187-195,共9页
基金
国家社会科学基金西部项目(17XXW005)资助
重庆市巴南区技术合作项目(2016TJ08)。
文摘
传统的卷积神经网络分类模型(CNN)的输出层采用扁平式架构的标准Softmax,在数据量较大、类别较多的文本分类任务中计算复杂度高,训练耗时长;而基于霍夫曼树(Huffman tree)构建的改进算法--层次Softmax(hierarchical softmax,H-Softmax)能极大地提高训练速度,但由于加入了大量的节点参数,使得优化难度增加,优化需要更长的迭代步,且容易过拟合,继而影响模型的拟合速度和分类效果。为此,提出了改进算法模型RHS-CNN(regularization hierarchical softmax CNN),采用正则化的方法,对H-Softmax的节点参数进行约束,避免过拟合,增强模型的泛化能力。实验分析结果表明:所提出的方法在相应评价指标上相对Softmax、H-Softmax有着一定的提升。
关键词
文本分类
正则化
h-softmax
RHS-CNN
Keywords
text classification
regularization
h-softmax
RHS-CNN
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
RHS-CNN:一种基于正则化层次Softmax的CNN文本分类模型
王勇
何养明
陈荟西
黎春
《重庆理工大学学报(自然科学)》
CAS
北大核心
2020
15
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部