In this study,the technical papers on structural condition assessment of aged fixed-type offshore platforms reported over the past few decades are presented.Other ancillary related works are also discussed.Large numbe...In this study,the technical papers on structural condition assessment of aged fixed-type offshore platforms reported over the past few decades are presented.Other ancillary related works are also discussed.Large numbers of researches are available in the area of requalification for life extension of offshore jacket platforms.Many of these studies involve reassessment of existing platforms by means of conducting pushover analysis,a static nonlinear collapse analysis method to evaluate the structure nonlinear behaviour and capacity beyond the elastic limit.From here,the failure mechanism and inherent reserve strength/capacity of the overall truss structure are determined.This method of doing reassessment is described clearly in the industry-adopted codes and standards such the API,ISO,PTS and NORSOK codes.This may help understand the structural behaviour of aged fixed offshore jacket structures for maintenance or decommissioning.展开更多
We developed a detailed simulation model of the Arctic marine transport system(MTS) for oil platform Prirazlomnaya. The model has a multidisciplinary nature and involves: sub-models of various transport and technologi...We developed a detailed simulation model of the Arctic marine transport system(MTS) for oil platform Prirazlomnaya. The model has a multidisciplinary nature and involves: sub-models of various transport and technological processes; stochastic weather generator to obtain time series of 15 environmental parameters; and contextual planning algorithm to build voyage plan considering several types of ships and cargoes. We used a significant amount of real operational data to identify model parameters and to prove its statistical reliability. Our main scientific task is to investigate the interaction of various processes of a different nature, while the practical aim is to find a set of measures to increase the efficiency of MTS. The results of the study reveal many examples of the mutual interaction of various processes that need to be considered at the design stage to avoid technical mistakes.The study formed a basis for making managerial decisions at the top level of Gazprom Neft Shelf Company.展开更多
基金This research was supported by the Yayasan Universiti Teknologi PETRONAS(YUTP)(Grant No.15-8209-054)Technology Innovation Program(Grant No.10053121)funded by the Ministry of Trade,Industry&Energy(MI,Korea).This research is part of Dr.Mubarak’s PhD thesis.
文摘In this study,the technical papers on structural condition assessment of aged fixed-type offshore platforms reported over the past few decades are presented.Other ancillary related works are also discussed.Large numbers of researches are available in the area of requalification for life extension of offshore jacket platforms.Many of these studies involve reassessment of existing platforms by means of conducting pushover analysis,a static nonlinear collapse analysis method to evaluate the structure nonlinear behaviour and capacity beyond the elastic limit.From here,the failure mechanism and inherent reserve strength/capacity of the overall truss structure are determined.This method of doing reassessment is described clearly in the industry-adopted codes and standards such the API,ISO,PTS and NORSOK codes.This may help understand the structural behaviour of aged fixed offshore jacket structures for maintenance or decommissioning.
文摘We developed a detailed simulation model of the Arctic marine transport system(MTS) for oil platform Prirazlomnaya. The model has a multidisciplinary nature and involves: sub-models of various transport and technological processes; stochastic weather generator to obtain time series of 15 environmental parameters; and contextual planning algorithm to build voyage plan considering several types of ships and cargoes. We used a significant amount of real operational data to identify model parameters and to prove its statistical reliability. Our main scientific task is to investigate the interaction of various processes of a different nature, while the practical aim is to find a set of measures to increase the efficiency of MTS. The results of the study reveal many examples of the mutual interaction of various processes that need to be considered at the design stage to avoid technical mistakes.The study formed a basis for making managerial decisions at the top level of Gazprom Neft Shelf Company.