Cascaded H-bridge inverter(CHBI) with supercapacitors(SCs) and dc-dc stage shows significant promise for medium to high voltage energy storage applications. This paper investigates the voltage balance of capacitors wi...Cascaded H-bridge inverter(CHBI) with supercapacitors(SCs) and dc-dc stage shows significant promise for medium to high voltage energy storage applications. This paper investigates the voltage balance of capacitors within the CHBI, including both the dc-link capacitors and SCs. Balance control over the dc-link capacitor voltages is realized by the dcdc stage in each submodule(SM), while a hybrid modulation strategy(HMS) is implemented in the H-bridge to balance the SC voltages among the SMs. Meanwhile, the dc-link voltage fluctuations are analyzed under the HMS. A virtual voltage variable is introduced to coordinate the balancing of dc-link capacitor voltages and SC voltages. Compared to the balancing method that solely considers the SC voltages, the presented method reduces the dc-link voltage fluctuations without affecting the voltage balance of SCs. Finally, both simulation and experimental results verify the effectiveness of the presented method.展开更多
We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc...We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc-ing control methods,the method proposed could make the PV strings of each submodule operate at their maximum power point by independent capacitor voltage control.Besides,the predicted and reference value of the grid-connected current was obtained according to the maximum power output of the maximum power point tracking.A cost function was con-structed to achieve the high-precision grid-connected control of the CHB inverter.Finally,the effectiveness of the proposed control method was verified through a semi-physical simulation platform with three submodules.展开更多
In recent days, the multilevel inverter technology is widely applied to domestic and industrial applications for medium voltage conversion. But, the power quality issues of the multilevel inverter limit the usage of m...In recent days, the multilevel inverter technology is widely applied to domestic and industrial applications for medium voltage conversion. But, the power quality issues of the multilevel inverter limit the usage of much sensitive equipment like medical instruments. The lower distortion level of the output voltage and current can generate a quality sinusoidal output voltage in inverters and they can be used for many applications. The harmonics can cause major problems in equipments due to the nonlinear loads connected with the power system. So, it is necessary to minimize the losses to raise its overall efficiency. In this paper, a new topology of seven level asymmetrical cascaded H-bridge multilevel inverter with a Fuzzy logic controller had been implemented to reduce the Total Harmonic Distortion (THD) and to improve the overall performance of the inverter. The proposed model is well suited for use with a solar PV application. In this topology, only six IGBT switches are used with three different voltage ratings of PV modules (1:2:4). The lower number of semiconductor switches leads to minimizing overall di/dt ratings and voltage stress on each switches and switching losses. The gate pulses generated by Sinusoidal Pulse Width Modulation (SPWM) technique with a Fuzzy logic controller are also introduced. A buck-boost converter is used to maintain the constant PV voltage level integrated by an MPPT technique followed by Perturb and Observer algorithm is also implemented. The MPPT is used to harness the maximum power of solar radiations under its various climatic conditions. The new topology is evaluated by a Matlab/Simulink model and compared with a hardware model. The results proved that the THD achieved by this topology is 1.66% and realized that it meets the IEEE harmonic standards.展开更多
This work presents an implementation of an innovative single phase multilevel inverter using capacitors with reduced switches. The proposed Capacitor pattern H-bridge Multilevel Inverter (CPHMLI) topology consists of ...This work presents an implementation of an innovative single phase multilevel inverter using capacitors with reduced switches. The proposed Capacitor pattern H-bridge Multilevel Inverter (CPHMLI) topology consists of a proper number of Capacitor connected with switches and power sources. The advanced switching control supplied by Pulse Width Modulation (PDPWM) to attain mixed staircase switching state. The charging and discharging mode are achieved by calculating the voltage error at the load. Furthermore, to accomplish the higher voltage levels at the output with less number of semiconductors switches and simple commutation designed using CPHMLI topology. To prove the performance and effectiveness of the proposed approach, a set of experiments performed under various load conditions using MATLAB tool.展开更多
In cascaded H-bridge multilevel inverter, a variable frequency inverted sine PWM technique is modeled for hybrid electric vehicles. It has a particular advantage of increasing power which is achieved using series conn...In cascaded H-bridge multilevel inverter, a variable frequency inverted sine PWM technique is modeled for hybrid electric vehicles. It has a particular advantage of increasing power which is achieved using series connection of H-bridge and also this topology is capable to produce superior spectral quality with considerable improvement of fundamental voltage. The variable frequency inverted sine PWM technique produces lesser torque ripple and enhances the fundamental output voltage mainly at lower modulation index ranges. The topologies of multilevel inverter are flying capacitor, diode clamped and cascaded inverter. In the paper, we will discuss about the cascaded multilevel inverter based on inverted sine PWM technique. The two switching strategies widely used to control multilevel inverters are constant frequency inverted sine PWM (CF-ISPWM) and variable frequency inverted sine PWM (VF-ISPWM). This implies that switch utilization substantially reduces 32.35% of the constant frequency inverted sine PWM switching technique. The performance of the technique is validated in terms of Total Harmonic Distortion (THD) and Torque ripple which significantly reduces when compared to constant frequency ISPWM. The analysis of conventional triangular PWM inverter and inverted sine PWM inverter using constant and variable switching scheme is done in MATLAB Simulink and verified experimentally by FPGA Spartan 3E processor.展开更多
Cascade multilevel inverters have been developed for electric utility applications. A cascade M level inverter consists of (M 1)/2 H bridges in which each bridge's dc voltage is supported by its own dc capacito...Cascade multilevel inverters have been developed for electric utility applications. A cascade M level inverter consists of (M 1)/2 H bridges in which each bridge's dc voltage is supported by its own dc capacitor. The new inverter can: (1) generate almost sinusoidal waveform voltage while only switching one time per fundamental cycle; (2) dispense with multi pulse inverters' transformers used in conventional utility interfaces and static var compensators; (3) enables direct parallel or series transformer less connection to medium and high voltage power systems. In short, the cascade inverter is much more efficient and suitable for utility applications than traditional multi pulse and pulse width modulation (PWM) inverters. The authors have experimentally demonstrated the superiority of the new inverter for power supply, (hybrid) electric vehicle (EV) motor drive, reactive power (var) and harmonic compensation. This paper summarizes the features, feasibility, and control schemes of the cascade inverter for utility applications including utility interface of renewable energy, voltage regulation, var compensation, and harmonic filtering in power systems. Analytical, simulated, and experimental results demonstrated the superiority of the new inverters.展开更多
This paper presents a combined control and modulation technique to enhance the power quality(PQ)and power reliability(PR)of a hybrid energy system(HES)through a single-phase 11-level cascaded H-bridge inverter(11-CHBI...This paper presents a combined control and modulation technique to enhance the power quality(PQ)and power reliability(PR)of a hybrid energy system(HES)through a single-phase 11-level cascaded H-bridge inverter(11-CHBI).The controller and inverter specifically regulate the HES and meet the load demand.To track optimum power,a Modified Perturb and Observe(MP&O)technique is used for HES.Ultra-capacitor(UCAP)based energy storage device and a novel current control strategy are proposed to provide additional active power support during both voltage sag and swell conditions.For an improved PQ and PR,a two-way current control strategy such as the main controller(MC)and auxiliary controller(AC)is suggested for the 11-CHBI operation.MC is used to regulate the active current component through the fuzzy controller(FC),and AC is used to regulate the dc-link voltage of CHBI through a neural network-based PI controller(ANN-PI).By tracking the reference signals fromMC and AC,a novel hybrid pulse widthmodulation(HPWM)technique is proposed for the 11-CHBI operation.To justify and analyze the MATLAB/Simulink software-based designed model,the robust controller performance is tested through numerous steady-state and dynamic state case studies.展开更多
3.SWITCHING ANGLES If the nominal capacitor voltage is chosen as Vdc/2, then one can compute the switching anglesθ1,θ2,andθ3.Following the development,the Fourier series expan- sion of the(staircase)output voltage ...3.SWITCHING ANGLES If the nominal capacitor voltage is chosen as Vdc/2, then one can compute the switching anglesθ1,θ2,andθ3.Following the development,the Fourier series expan- sion of the(staircase)output voltage waveform of the multilevel inverter as shown in Fig.2(a)展开更多
Both Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs) need a traction motor and a power in-verter to drive the traction motor. The requirements for the power inverter include high peak power, opti-mum consu...Both Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs) need a traction motor and a power in-verter to drive the traction motor. The requirements for the power inverter include high peak power, opti-mum consumption of energy, low output harmonics and inexpensive circuit. In this paper, a new structure of multilevel inverter with reduced number of switches is proposed for electric vehicle applications. It consists of an H-bridge and an inverter in each phase which produces multilevel voltage by switching the dc voltage sources in series. As the number of switches are reduced, both conduction and switching losses will be de-creased, which leads to increase the efficiency of converter. The size and power consumption of driving cir-cuits are also reduced. The proposed three phase inverter can produces more number of voltage levels in the same number of the voltage source and reduced number of switches compared to the conventional inverters. This structure minimizes the total harmonic distortion (THD) of the output voltage waveforms. The structure of proposed multilevel inverter, modulation method, switching losses, THD calculation and simulation re-sults with PSCAD/EMTDC software are shown in this paper.展开更多
This paper presents a unique novel design of the phase-shifted cascade high voltage inverter. Thehigh voltage inverter utilizes fewer power switches and supplies a balance load. The usage of phase shifttransformer and...This paper presents a unique novel design of the phase-shifted cascade high voltage inverter. Thehigh voltage inverter utilizes fewer power switches and supplies a balance load. The usage of phase shifttransformer and phase shifting SPWM ensures that input and output harmonic wave content is low and outputvoltage change (du/dt) has a low rate, meeting all the requirements of the power authorities. The most out-standing feature is the energy saving with very fast cost recovery.展开更多
The various configurations of multilevel inverter involve the use of more numbers of switching devices, energy storage devices and/or unidirectional devices. Each switching unit necessitates the add-on driver circuit ...The various configurations of multilevel inverter involve the use of more numbers of switching devices, energy storage devices and/or unidirectional devices. Each switching unit necessitates the add-on driver circuit for proper functionality. Cascaded H-Bridge Multilevel Inverter requires overlapped switching pulses for the switching devices in positive and negative arms of the bridge which may lead to short circuit during the device failure. This work addresses the problems in different configurations of multilevel inverter by using reduced number of switching and energy storage devices and driver circuits. In the present approach Single Switch is used for each stair case positive output and single H-Bridge for phase reversal. Driver circuits are reduced by using the property of body diode of the MOSFET. Switching pulses are generated by Arduino Development Board. The circuit is simulated using Matlab. More so, through experimental means, it is physically tested and results are analyzed for the 5-step inverter and thereby simulation is fully validated. Consequently, cycloconverter operation of the circuit is simulated using Matlab. Moreover, half bridge configuration of the multilevel inverter is also analyzed for high frequency induction heating applications.展开更多
This paper focuses on a Z source cascaded multilevel inverter which is designed to minimize harmonics in the output voltage. A balanced dc-link peak voltage can be achieved. The power generation module is built by PV ...This paper focuses on a Z source cascaded multilevel inverter which is designed to minimize harmonics in the output voltage. A balanced dc-link peak voltage can be achieved. The power generation module is built by PV panels which are connected to Z-Source Cascade H-bridge inverter. Cascaded multilevel inverter can achieve the distributed maximum power point tracking to increase the system efficiency and achieve high voltage/high power grid tie without a transformer. This paper analyzes the different PWM switching scheme and the operating states of a ZSI module and comparison is made with different PWM and total harmonic distortion of various PWM schemes.展开更多
This paper presents the characteristic and structure of phase-shifted cascade high voltage inverter. The high voltage inverter utilizes fewer power switches and has a balance load, a good linearity between input and o...This paper presents the characteristic and structure of phase-shifted cascade high voltage inverter. The high voltage inverter utilizes fewer power switches and has a balance load, a good linearity between input and output and a perfect control feature.展开更多
A study is conducted to evaluate 1.2 kV silicon-carbide(SiC)MOSFETs in a cascaded H-bridge(CHB)three-phase inverter for medium-voltage applications.The main purpose of this topology is to remove the need for a bulky 6...A study is conducted to evaluate 1.2 kV silicon-carbide(SiC)MOSFETs in a cascaded H-bridge(CHB)three-phase inverter for medium-voltage applications.The main purpose of this topology is to remove the need for a bulky 60 Hz transformer normally used to step up the output signal of a voltage source inverter to a medium-voltage level.Using SiC devices(1.2-6.5 kV SiC MOSFETs)which have a high breakdown voltage,enables the system to meet and withstand the medium-voltage stress using only a minimal number of cascaded modules.The SiC-based power electronics when used in the presented topology considerably reduce the complexity usually encountered when Si devices are used to meet the medium-voltage level and power scalability.Simulation and preliminary experimental results on a low-voltage prototype verifies the nine-level CHB topology presented in this study.展开更多
基金supported in part by the CAS Project for Young Scientists in Basic Research under Grant No. YSBR-045the Youth Innovation Promotion Association CAS under Grant 2022137the Institute of Electrical Engineering CAS under Grant E155320101。
文摘Cascaded H-bridge inverter(CHBI) with supercapacitors(SCs) and dc-dc stage shows significant promise for medium to high voltage energy storage applications. This paper investigates the voltage balance of capacitors within the CHBI, including both the dc-link capacitors and SCs. Balance control over the dc-link capacitor voltages is realized by the dcdc stage in each submodule(SM), while a hybrid modulation strategy(HMS) is implemented in the H-bridge to balance the SC voltages among the SMs. Meanwhile, the dc-link voltage fluctuations are analyzed under the HMS. A virtual voltage variable is introduced to coordinate the balancing of dc-link capacitor voltages and SC voltages. Compared to the balancing method that solely considers the SC voltages, the presented method reduces the dc-link voltage fluctuations without affecting the voltage balance of SCs. Finally, both simulation and experimental results verify the effectiveness of the presented method.
基金Research on Control Methods and Fault Tolerance of Multilevel Electronic Transformers for PV Access(Project number:042300034204)Research on Open-Circuit Fault Diagnosis and Seamless Fault-Tolerant Control of Multiple Devices in Modular Multilevel Digital Power Amplifiers(Project number:202203021212210)Research on Key Technologies and Demonstrations of Low-Voltage DC Power Electronic Converters Based on SiC Devices Access(Project number:202102060301012)。
文摘We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc-ing control methods,the method proposed could make the PV strings of each submodule operate at their maximum power point by independent capacitor voltage control.Besides,the predicted and reference value of the grid-connected current was obtained according to the maximum power output of the maximum power point tracking.A cost function was con-structed to achieve the high-precision grid-connected control of the CHB inverter.Finally,the effectiveness of the proposed control method was verified through a semi-physical simulation platform with three submodules.
文摘In recent days, the multilevel inverter technology is widely applied to domestic and industrial applications for medium voltage conversion. But, the power quality issues of the multilevel inverter limit the usage of much sensitive equipment like medical instruments. The lower distortion level of the output voltage and current can generate a quality sinusoidal output voltage in inverters and they can be used for many applications. The harmonics can cause major problems in equipments due to the nonlinear loads connected with the power system. So, it is necessary to minimize the losses to raise its overall efficiency. In this paper, a new topology of seven level asymmetrical cascaded H-bridge multilevel inverter with a Fuzzy logic controller had been implemented to reduce the Total Harmonic Distortion (THD) and to improve the overall performance of the inverter. The proposed model is well suited for use with a solar PV application. In this topology, only six IGBT switches are used with three different voltage ratings of PV modules (1:2:4). The lower number of semiconductor switches leads to minimizing overall di/dt ratings and voltage stress on each switches and switching losses. The gate pulses generated by Sinusoidal Pulse Width Modulation (SPWM) technique with a Fuzzy logic controller are also introduced. A buck-boost converter is used to maintain the constant PV voltage level integrated by an MPPT technique followed by Perturb and Observer algorithm is also implemented. The MPPT is used to harness the maximum power of solar radiations under its various climatic conditions. The new topology is evaluated by a Matlab/Simulink model and compared with a hardware model. The results proved that the THD achieved by this topology is 1.66% and realized that it meets the IEEE harmonic standards.
文摘This work presents an implementation of an innovative single phase multilevel inverter using capacitors with reduced switches. The proposed Capacitor pattern H-bridge Multilevel Inverter (CPHMLI) topology consists of a proper number of Capacitor connected with switches and power sources. The advanced switching control supplied by Pulse Width Modulation (PDPWM) to attain mixed staircase switching state. The charging and discharging mode are achieved by calculating the voltage error at the load. Furthermore, to accomplish the higher voltage levels at the output with less number of semiconductors switches and simple commutation designed using CPHMLI topology. To prove the performance and effectiveness of the proposed approach, a set of experiments performed under various load conditions using MATLAB tool.
文摘In cascaded H-bridge multilevel inverter, a variable frequency inverted sine PWM technique is modeled for hybrid electric vehicles. It has a particular advantage of increasing power which is achieved using series connection of H-bridge and also this topology is capable to produce superior spectral quality with considerable improvement of fundamental voltage. The variable frequency inverted sine PWM technique produces lesser torque ripple and enhances the fundamental output voltage mainly at lower modulation index ranges. The topologies of multilevel inverter are flying capacitor, diode clamped and cascaded inverter. In the paper, we will discuss about the cascaded multilevel inverter based on inverted sine PWM technique. The two switching strategies widely used to control multilevel inverters are constant frequency inverted sine PWM (CF-ISPWM) and variable frequency inverted sine PWM (VF-ISPWM). This implies that switch utilization substantially reduces 32.35% of the constant frequency inverted sine PWM switching technique. The performance of the technique is validated in terms of Total Harmonic Distortion (THD) and Torque ripple which significantly reduces when compared to constant frequency ISPWM. The analysis of conventional triangular PWM inverter and inverted sine PWM inverter using constant and variable switching scheme is done in MATLAB Simulink and verified experimentally by FPGA Spartan 3E processor.
文摘Cascade multilevel inverters have been developed for electric utility applications. A cascade M level inverter consists of (M 1)/2 H bridges in which each bridge's dc voltage is supported by its own dc capacitor. The new inverter can: (1) generate almost sinusoidal waveform voltage while only switching one time per fundamental cycle; (2) dispense with multi pulse inverters' transformers used in conventional utility interfaces and static var compensators; (3) enables direct parallel or series transformer less connection to medium and high voltage power systems. In short, the cascade inverter is much more efficient and suitable for utility applications than traditional multi pulse and pulse width modulation (PWM) inverters. The authors have experimentally demonstrated the superiority of the new inverter for power supply, (hybrid) electric vehicle (EV) motor drive, reactive power (var) and harmonic compensation. This paper summarizes the features, feasibility, and control schemes of the cascade inverter for utility applications including utility interface of renewable energy, voltage regulation, var compensation, and harmonic filtering in power systems. Analytical, simulated, and experimental results demonstrated the superiority of the new inverters.
基金Assistance provided by Council of scientific and industrial research(CSIR),Government of India,under the acknowledgment number 143460/2K19/1(File:09/969(0013)/2020-EMR-I)and Siksha O Anusandhan(Deemed to be University).
文摘This paper presents a combined control and modulation technique to enhance the power quality(PQ)and power reliability(PR)of a hybrid energy system(HES)through a single-phase 11-level cascaded H-bridge inverter(11-CHBI).The controller and inverter specifically regulate the HES and meet the load demand.To track optimum power,a Modified Perturb and Observe(MP&O)technique is used for HES.Ultra-capacitor(UCAP)based energy storage device and a novel current control strategy are proposed to provide additional active power support during both voltage sag and swell conditions.For an improved PQ and PR,a two-way current control strategy such as the main controller(MC)and auxiliary controller(AC)is suggested for the 11-CHBI operation.MC is used to regulate the active current component through the fuzzy controller(FC),and AC is used to regulate the dc-link voltage of CHBI through a neural network-based PI controller(ANN-PI).By tracking the reference signals fromMC and AC,a novel hybrid pulse widthmodulation(HPWM)technique is proposed for the 11-CHBI operation.To justify and analyze the MATLAB/Simulink software-based designed model,the robust controller performance is tested through numerous steady-state and dynamic state case studies.
文摘3.SWITCHING ANGLES If the nominal capacitor voltage is chosen as Vdc/2, then one can compute the switching anglesθ1,θ2,andθ3.Following the development,the Fourier series expan- sion of the(staircase)output voltage waveform of the multilevel inverter as shown in Fig.2(a)
文摘Both Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs) need a traction motor and a power in-verter to drive the traction motor. The requirements for the power inverter include high peak power, opti-mum consumption of energy, low output harmonics and inexpensive circuit. In this paper, a new structure of multilevel inverter with reduced number of switches is proposed for electric vehicle applications. It consists of an H-bridge and an inverter in each phase which produces multilevel voltage by switching the dc voltage sources in series. As the number of switches are reduced, both conduction and switching losses will be de-creased, which leads to increase the efficiency of converter. The size and power consumption of driving cir-cuits are also reduced. The proposed three phase inverter can produces more number of voltage levels in the same number of the voltage source and reduced number of switches compared to the conventional inverters. This structure minimizes the total harmonic distortion (THD) of the output voltage waveforms. The structure of proposed multilevel inverter, modulation method, switching losses, THD calculation and simulation re-sults with PSCAD/EMTDC software are shown in this paper.
文摘This paper presents a unique novel design of the phase-shifted cascade high voltage inverter. Thehigh voltage inverter utilizes fewer power switches and supplies a balance load. The usage of phase shifttransformer and phase shifting SPWM ensures that input and output harmonic wave content is low and outputvoltage change (du/dt) has a low rate, meeting all the requirements of the power authorities. The most out-standing feature is the energy saving with very fast cost recovery.
文摘The various configurations of multilevel inverter involve the use of more numbers of switching devices, energy storage devices and/or unidirectional devices. Each switching unit necessitates the add-on driver circuit for proper functionality. Cascaded H-Bridge Multilevel Inverter requires overlapped switching pulses for the switching devices in positive and negative arms of the bridge which may lead to short circuit during the device failure. This work addresses the problems in different configurations of multilevel inverter by using reduced number of switching and energy storage devices and driver circuits. In the present approach Single Switch is used for each stair case positive output and single H-Bridge for phase reversal. Driver circuits are reduced by using the property of body diode of the MOSFET. Switching pulses are generated by Arduino Development Board. The circuit is simulated using Matlab. More so, through experimental means, it is physically tested and results are analyzed for the 5-step inverter and thereby simulation is fully validated. Consequently, cycloconverter operation of the circuit is simulated using Matlab. Moreover, half bridge configuration of the multilevel inverter is also analyzed for high frequency induction heating applications.
文摘This paper focuses on a Z source cascaded multilevel inverter which is designed to minimize harmonics in the output voltage. A balanced dc-link peak voltage can be achieved. The power generation module is built by PV panels which are connected to Z-Source Cascade H-bridge inverter. Cascaded multilevel inverter can achieve the distributed maximum power point tracking to increase the system efficiency and achieve high voltage/high power grid tie without a transformer. This paper analyzes the different PWM switching scheme and the operating states of a ZSI module and comparison is made with different PWM and total harmonic distortion of various PWM schemes.
文摘This paper presents the characteristic and structure of phase-shifted cascade high voltage inverter. The high voltage inverter utilizes fewer power switches and has a balance load, a good linearity between input and output and a perfect control feature.
文摘A study is conducted to evaluate 1.2 kV silicon-carbide(SiC)MOSFETs in a cascaded H-bridge(CHB)three-phase inverter for medium-voltage applications.The main purpose of this topology is to remove the need for a bulky 60 Hz transformer normally used to step up the output signal of a voltage source inverter to a medium-voltage level.Using SiC devices(1.2-6.5 kV SiC MOSFETs)which have a high breakdown voltage,enables the system to meet and withstand the medium-voltage stress using only a minimal number of cascaded modules.The SiC-based power electronics when used in the presented topology considerably reduce the complexity usually encountered when Si devices are used to meet the medium-voltage level and power scalability.Simulation and preliminary experimental results on a low-voltage prototype verifies the nine-level CHB topology presented in this study.