Smart nanoparticles that respond to pathophysiological parameters,such as p H,GSH,and H2O2,have been developed with the huge and urgent demand for the high-efficient drug delivery systems(DDS)for cancer therapy.Herein...Smart nanoparticles that respond to pathophysiological parameters,such as p H,GSH,and H2O2,have been developed with the huge and urgent demand for the high-efficient drug delivery systems(DDS)for cancer therapy.Herein,cubic poly(ethylene glycol)(PEG)-modified mesoporous amorphous iron oxide(AFe)nanoparticles(AFe-PEG)have been successfully prepared as p H-stimulated drug carriers,which can combine doxorubicin(DOX)with a high loading capacity of 948 mg/g,forming a novel multifunctional AFe-PEG/DOX nanoparticulate DDS.In an acidic microenvironment,the AFe-PEG/DOX nanoparticles will not only release DOX efficiently,but also release Fe ions to catalyze the transformation of H2O2 to·OH,acting as fenton reagents.In vitro experimental results proved that the AFe-PEG/DOX nanoparticles can achieve combination of chemotherapeutic(CTT)and chemodynamic therapeutic(CDT)effects on Hela tumor cells.Furthermore,the intrinsic magnetism of AFePEG/DOX makes its cellular internalization efficiency be improved under an external magnetic field.Therefore,this work develops a new and promising magnetically targeted delivery and dual CTT/CDT therapeutic nano-medicine platform based on amorphous iron oxide.展开更多
This work reported an AIE fluorescent probe for tumor imaging based on the p H induced self-assembly strategy. The fluorescent probe was composed of an acid-responsive soluble copolymer PEG-b-PAMA-DMMA with a maleic a...This work reported an AIE fluorescent probe for tumor imaging based on the p H induced self-assembly strategy. The fluorescent probe was composed of an acid-responsive soluble copolymer PEG-b-PAMA-DMMA with a maleic acid amide group and an anionic soluble aggregation-induced emission fluorogen(AIEgen) TPE-2SO_(3)^(-). The polymer could be transformed into a protonated amine-containing polymer after the hydrolysis of maleic acid amide in acidic tumor microenvironment, which would be further self-assembled with TPE-2SO_(3)^(-)to form aggregated nanoparticles. The transition of TPE-2SO_(3)^(-)from dispersed state to aggregated state led to an obvious increase in fluorescence intensity due to its AIE characteristics.展开更多
Various semi-interpenetrating polymer network(semi-IPN) hydrogels composed of pore-forming agent polyethylene glycol(PEG), acrylic acid(AA) and acrylamide(AM) were prepared by using free radical polymerization...Various semi-interpenetrating polymer network(semi-IPN) hydrogels composed of pore-forming agent polyethylene glycol(PEG), acrylic acid(AA) and acrylamide(AM) were prepared by using free radical polymerization with a two-step method. The chemical structures of the synthesized hydrogels were characterized by FTIR spectroscopy and the morphologies were studied by scanning electron microscopy(SEM) method. The swelling properties, such as the p Hresponsive behavior, salt sensitivity, oscillatory swelling/de-swelling behaviors in different solutions with various p H values and self-oscillating behaviors in bath p H oscillator were investigated in detail. The results revealed that the prepared hydrogels exhibited high p H sensitivity and excellent salt sensitivity when the p H values of the medium changes from 3.0 and 7.0 and well reversible properties by undergoing a number of swelling/de-swelling recycles. In particular, the hydrogels exhibited self-oscillation behavior in a closed system containing Br O3?-SO32?-Fe(CN)64?-H+. This study may create a new possibility as biomaterial for new self-walking actuators and other devices.展开更多
基金supported by the National Natural Science Foundation of China(No.51473152 and No.51573174)Scientific Research Foundation for Young Talents from Fujian Provincial Department of Education(No.JT180494)Scientific Research Platform Construction Project from Fujian Provincial Department of Science and Technology(No.2018H2002)。
文摘Smart nanoparticles that respond to pathophysiological parameters,such as p H,GSH,and H2O2,have been developed with the huge and urgent demand for the high-efficient drug delivery systems(DDS)for cancer therapy.Herein,cubic poly(ethylene glycol)(PEG)-modified mesoporous amorphous iron oxide(AFe)nanoparticles(AFe-PEG)have been successfully prepared as p H-stimulated drug carriers,which can combine doxorubicin(DOX)with a high loading capacity of 948 mg/g,forming a novel multifunctional AFe-PEG/DOX nanoparticulate DDS.In an acidic microenvironment,the AFe-PEG/DOX nanoparticles will not only release DOX efficiently,but also release Fe ions to catalyze the transformation of H2O2 to·OH,acting as fenton reagents.In vitro experimental results proved that the AFe-PEG/DOX nanoparticles can achieve combination of chemotherapeutic(CTT)and chemodynamic therapeutic(CDT)effects on Hela tumor cells.Furthermore,the intrinsic magnetism of AFePEG/DOX makes its cellular internalization efficiency be improved under an external magnetic field.Therefore,this work develops a new and promising magnetically targeted delivery and dual CTT/CDT therapeutic nano-medicine platform based on amorphous iron oxide.
基金financially supported by the National Key Research and Development Program of China (No.2021YFC2103100)the National Natural Science Foundation of China (Nos.51873097 and 21674058)。
文摘This work reported an AIE fluorescent probe for tumor imaging based on the p H induced self-assembly strategy. The fluorescent probe was composed of an acid-responsive soluble copolymer PEG-b-PAMA-DMMA with a maleic acid amide group and an anionic soluble aggregation-induced emission fluorogen(AIEgen) TPE-2SO_(3)^(-). The polymer could be transformed into a protonated amine-containing polymer after the hydrolysis of maleic acid amide in acidic tumor microenvironment, which would be further self-assembled with TPE-2SO_(3)^(-)to form aggregated nanoparticles. The transition of TPE-2SO_(3)^(-)from dispersed state to aggregated state led to an obvious increase in fluorescence intensity due to its AIE characteristics.
基金financially supported by the Basic Project of Science and Research of Colleges and Universities of Gansu Province(No.5001-109)the Natural Science Foundation of Gansu Province(No.1010 RJZA015)
文摘Various semi-interpenetrating polymer network(semi-IPN) hydrogels composed of pore-forming agent polyethylene glycol(PEG), acrylic acid(AA) and acrylamide(AM) were prepared by using free radical polymerization with a two-step method. The chemical structures of the synthesized hydrogels were characterized by FTIR spectroscopy and the morphologies were studied by scanning electron microscopy(SEM) method. The swelling properties, such as the p Hresponsive behavior, salt sensitivity, oscillatory swelling/de-swelling behaviors in different solutions with various p H values and self-oscillating behaviors in bath p H oscillator were investigated in detail. The results revealed that the prepared hydrogels exhibited high p H sensitivity and excellent salt sensitivity when the p H values of the medium changes from 3.0 and 7.0 and well reversible properties by undergoing a number of swelling/de-swelling recycles. In particular, the hydrogels exhibited self-oscillation behavior in a closed system containing Br O3?-SO32?-Fe(CN)64?-H+. This study may create a new possibility as biomaterial for new self-walking actuators and other devices.