Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and us...Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and used to investigate the seismic behavior of the connection.The results of the finite element model are validated by a set of cyclic loading tests.The cyclic loading tests and the finite element analyses indicate that the failure mode of the suggested connections is plastic hinge at the beam with inelastic rotation angle exceeding 0.04 rad.The suggested connections have sufficient strength,plastic deformation and energy dissipation capacity to be used in composite moment frames as beam-to-column rigid connections.展开更多
Investigations of the seismic behavior of steel reinforced concrete L-shaped columns under constant axial compression and cycled bending-shear-torsion load were performed.Six specimens,which considered two parameters,...Investigations of the seismic behavior of steel reinforced concrete L-shaped columns under constant axial compression and cycled bending-shear-torsion load were performed.Six specimens,which considered two parameters,i.e.,the moment ratio of torsion to bending(γ)and the aspect ratio(column length-to-depth ratio,φ),were prepared for the experiment.In this study,the failure process,torsion-displacement hysteresis curves,and flexure-displacement hysteresis curves were obtained.The failure characteristics,mechanical behavior of specimens such as the failure patterns,hysteresis curves,rigidity degradation,ductility and energy dissipation,are analyzed.The experimental research indicated that the major failures of the specimens were bending failure,bending-shear failure and bending-torsion failure as the moment ratio of torsion to bending(γ)increased.The torsion-displacement hysteresis curves were pinched in the middle,formed a slip platform,and the phenomenon of“load drop”occurred after the peak load.The bending-displacement hysteresis curves were plump,which showed that bending capacity of the specimen was better than its torsion capacity.Additionally,the energy dissipation of the specimen was dominated by torsion in the early stage and ultimately governed by the bending moment in the later phase.Test results also indicated that the displacement ductility coefficient and interstory rotation angle of the failure point were less than 3.0 and 1/50,respectively,which means the test specimen performance does not meet the requirement of the Chinese Code for Seismic Design of Buildings(GB 50011-2014)in this respect.展开更多
基金Supported by National Natural Science Foundation of China(No.51268054)Natural Science Foundation of Tianjin(No.13JCQNJC07300)the foundation of Key Laboratory of Coast Civil Structure Safety(Tianjin University),Ministry of Education of China(No.2011-1)
文摘Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and used to investigate the seismic behavior of the connection.The results of the finite element model are validated by a set of cyclic loading tests.The cyclic loading tests and the finite element analyses indicate that the failure mode of the suggested connections is plastic hinge at the beam with inelastic rotation angle exceeding 0.04 rad.The suggested connections have sufficient strength,plastic deformation and energy dissipation capacity to be used in composite moment frames as beam-to-column rigid connections.
基金National Natural Science Foundation of China under Grant Nos.51268004 and 51578163Natural Science Foundation of Guangxi under Grant No 2016GXNSFDA380032Bagui Scholar Program of Guangxi under Grant No:[2019]79。
文摘Investigations of the seismic behavior of steel reinforced concrete L-shaped columns under constant axial compression and cycled bending-shear-torsion load were performed.Six specimens,which considered two parameters,i.e.,the moment ratio of torsion to bending(γ)and the aspect ratio(column length-to-depth ratio,φ),were prepared for the experiment.In this study,the failure process,torsion-displacement hysteresis curves,and flexure-displacement hysteresis curves were obtained.The failure characteristics,mechanical behavior of specimens such as the failure patterns,hysteresis curves,rigidity degradation,ductility and energy dissipation,are analyzed.The experimental research indicated that the major failures of the specimens were bending failure,bending-shear failure and bending-torsion failure as the moment ratio of torsion to bending(γ)increased.The torsion-displacement hysteresis curves were pinched in the middle,formed a slip platform,and the phenomenon of“load drop”occurred after the peak load.The bending-displacement hysteresis curves were plump,which showed that bending capacity of the specimen was better than its torsion capacity.Additionally,the energy dissipation of the specimen was dominated by torsion in the early stage and ultimately governed by the bending moment in the later phase.Test results also indicated that the displacement ductility coefficient and interstory rotation angle of the failure point were less than 3.0 and 1/50,respectively,which means the test specimen performance does not meet the requirement of the Chinese Code for Seismic Design of Buildings(GB 50011-2014)in this respect.