The proposed robust reversible watermarking algorithm addresses the compatibility challenges between robustness and reversibility in existing video watermarking techniques by leveraging scene smoothness for frame grou...The proposed robust reversible watermarking algorithm addresses the compatibility challenges between robustness and reversibility in existing video watermarking techniques by leveraging scene smoothness for frame grouping videos.Grounded in the H.264 video coding standard,the algorithm first employs traditional robust watermark stitching technology to embed watermark information in the low-frequency coefficient domain of the U channel.Subsequently,it utilizes histogram migration techniques in the high-frequency coefficient domain of the U channel to embed auxiliary information,enabling successful watermark extraction and lossless recovery of the original video content.Experimental results demonstrate the algorithm’s strong imperceptibility,with each embedded frame in the experimental videos achieving a mean peak signal-to-noise ratio of 49.3830 dB and a mean structural similarity of 0.9996.Compared with the three comparison algorithms,the performance of the two experimental indexes is improved by 7.59%and 0.4%on average.At the same time,the proposed algorithm has strong robustness to both offline and online attacks:In the face of offline attacks,the average normalized correlation coefficient between the extracted watermark and the original watermark is 0.9989,and the average bit error rate is 0.0089.In the face of online attacks,the normalized correlation coefficient between the extracted watermark and the original watermark is 0.8840,and the mean bit error rate is 0.2269.Compared with the three comparison algorithms,the performance of the two experimental indexes is improved by 1.27%and 18.16%on average,highlighting the algorithm’s robustness.Furthermore,the algorithm exhibits low computational complexity,with the mean encoding and the mean decoding time differentials during experimental video processing being 3.934 and 2.273 s,respectively,underscoring its practical utility.展开更多
With advanced prediction modes of intra prediction, intra coding of H.264/AVC offers significant coding gains compared with previous video coding standards. It uses an important tool called Lagrangian rate-distortion ...With advanced prediction modes of intra prediction, intra coding of H.264/AVC offers significant coding gains compared with previous video coding standards. It uses an important tool called Lagrangian rate-distortion optimization (RDO)technique to decide the best coding mode for a block, but the computational burden is extremely high. In this paper, we proposed an improved fast intra prediction algorithm including block type selection and mode decision algorithm based on analysis of edge feature of a block. Our algorithm filters out unlikely block type and candidate modes to reduce the RDO calculations. Experimental results showed that the proposed algorithm can reduce the computation complexity of intra prediction from 52.90% to 56.31%, with 0.04 dB PSNR degradation and 2% increase of bit rate.展开更多
A fast mode decision algorithm is proposed in this paper to accelerate the process of transcoding videos into H.264with arbitrary rate spatial resolution down-scaling. The proposed algorithm consists of three steps. F...A fast mode decision algorithm is proposed in this paper to accelerate the process of transcoding videos into H.264with arbitrary rate spatial resolution down-scaling. The proposed algorithm consists of three steps. First, an early-stop technique is introduced to determine the 16× 16-mode blocks, which take up about 70% of all the macroblocks; then, a bottom-up merging process is performed to determine the mode of rest non-early-stopped blocks; and then, we adopt half-pixel motion estimation to further refine the acquired predictive motion vectors. In order to obtain the predictive motion vectors for early-stop and merging processes, we propose a motion vector composition scheme, which can reuse the information in the input pre-encoded videos to handle the spatial resolution down-scaling. Experimental results showed that our algorithm is about four times faster than the Cascaded-Decoder-Encoder method and has negligible PSNR drop and little bit rate increase.展开更多
This letter proposes a rate control algorithm for H.264 video encoder, which is based on block activity and buffer state. Experimental results indicate that it has an excellent performance by providing much accurate b...This letter proposes a rate control algorithm for H.264 video encoder, which is based on block activity and buffer state. Experimental results indicate that it has an excellent performance by providing much accurate bit rate and better coding efficiency compared with H.264. The computational complexity of the algorithm is reduced by adopting a novel block activity description method using the Sum of Absolute Difference (SAD) of 16× 16 mode, and its robustness is enhanced by introducing a feedback circuit at frame layer.展开更多
H.264/AVC video coding standard can achieve roughly half of the bit-savings over MPEG2 and MPEG4 for a given quality. However, this comes at a cost in considerably increased complexity at the encoder and thus increase...H.264/AVC video coding standard can achieve roughly half of the bit-savings over MPEG2 and MPEG4 for a given quality. However, this comes at a cost in considerably increased complexity at the encoder and thus increases the difficulty in hardware implementation. The high redundancy that exists between the successive frames of a video sequence makes it possible to achieve a high data compression ratio. Motion estimation (ME) plays an important role in motion compensated video coding. A fast motion estimation algorithm for H.264/AVC is proposed based on centered prediction, called centered prediction based fast mixed search algorithm (CPFMS). It makes use of the spatial and temporal correlation in motion vector (MV) fields and feature of all-zero blocks to accelerate the searching process. With the initialized searching point prediction, adaptive search window changing and searching direction decision, CPFMS is provided to reduce computation in block-matching process. The experimental results show that the speed of CPFMS is nearly 12 times of FS with a negligible peak signal-noise ratio (PSNR) loss. Also, the efficiency of CPFMS outperforms some popular fast algorithms such as hybrid unsymmetrical cross multi-hexagongrid search and a novel multidirectional gradient descent search evidently.展开更多
The transmission of video content over a network raises various issues relating to copyright authenticity,ethics,legality,and privacy.The protection of copyrighted video content is a significant issue in the video ind...The transmission of video content over a network raises various issues relating to copyright authenticity,ethics,legality,and privacy.The protection of copyrighted video content is a significant issue in the video industry,and it is essential to find effective solutions to prevent tampering and modification of digital video content during its transmission through digital media.However,there are stillmany unresolved challenges.This paper aims to address those challenges by proposing a new technique for detectingmoving objects in digital videos,which can help prove the credibility of video content by detecting any fake objects inserted by hackers.The proposed technique involves using two methods,the H.264 and the extraction color features methods,to embed and extract watermarks in video frames.The study tested the performance of the system against various attacks and found it to be robust.The evaluation was done using different metrics such as Peak-Signal-to-Noise Ratio(PSNR),Mean Squared Error(MSE),Structural Similarity Index Measure(SSIM),Bit Correction Ratio(BCR),and Normalized Correlation.The accuracy of identifying moving objects was high,ranging from 96.3%to 98.7%.The system was also able to embed a fragile watermark with a success rate of over 93.65%and had an average capacity of hiding of 78.67.The reconstructed video frames had high quality with a PSNR of at least 65.45 dB and SSIMof over 0.97,making them imperceptible to the human eye.The system also had an acceptable average time difference(T=1.227/s)compared with other state-of-the-art methods.展开更多
A fast quarter-pixel motion estimation algorithm is proposed in this paper. The proposed algorithm based on mathematical models of the motion compensated prediction errors. Unlike conventional quarter-pixel accurate m...A fast quarter-pixel motion estimation algorithm is proposed in this paper. The proposed algorithm based on mathematical models of the motion compensated prediction errors. Unlike conventional quarter-pixel accurate motion estimation algorithm, proposed algorithm can avoid fractional-pixel interpolation and subsequent fractional-pixel search after integer-precision motion estimation. Experiments show that the proposed algorithm greatly reduces the computational complexity of quarter- pixel motion estimation, while keeping the nearly equal quality of the展开更多
H.264/AVC video is one of the most popular multimedia and has been widely used as the carriers of video steganography.In this paper,a novel motion vector(MV)based steganographic algorithm is proposed for the H.264/AVC...H.264/AVC video is one of the most popular multimedia and has been widely used as the carriers of video steganography.In this paper,a novel motion vector(MV)based steganographic algorithm is proposed for the H.264/AVC compressed video without distortion.Four modules are introduced to eliminate the distortion caused by the modifications of motion vectors and guarantee the security of the algorithm.In the embedding block,the motion vector space encoding is used to embed a(2n+1)-ary notational number into an n-dimension vector composed of motion vectors generated from the selection block.Scrambling is adopted to disturb the order of steganographic carriers to improve the randomness of the carrier before the operation of embedding.The re-motion compensation(re-MC)block will re-construct the macroblock(MB)whose motion vectors have been modified by embedding block.System block plays the role of the generator for chaotic sequences and encryptor for secret data.Experimental results demonstrate that our proposed algorithm can achieve high embedding capacity without stego video visual quality distortion,it also presents good undetectability for existing MV-based steganalysis feature.Performance comparisons with other existing algorithms are provided to demonstrate the superiority of the proposed algorithm.展开更多
In order to reduce the encoding complexity of macroblock coding mode decision in H.264/AVC, a selective smaller block-size searching algorithm and a selective intra coding mode searching algorithm are proposed by usin...In order to reduce the encoding complexity of macroblock coding mode decision in H.264/AVC, a selective smaller block-size searching algorithm and a selective intra coding mode searching algorithm are proposed by using the high correlation among coding modes and in spatial and temporal domains of video sequence. Simulation results demonstrate that the proposed algorithm can provide significant improvement in computational requirement, with negligible small picture quality degradation and slight bit rate increase.展开更多
Diamond search (DS) is an excellent fast block matching motion estimation (BMME) algorithm. In this paper, we propose an improved diamond search (IDS) algorithm, which revises the two search patterns of DS. The ...Diamond search (DS) is an excellent fast block matching motion estimation (BMME) algorithm. In this paper, we propose an improved diamond search (IDS) algorithm, which revises the two search patterns of DS. The proposed algorithm is compared with several mainstream algorithms. The simulation results show that the proposed algorithm over DS can be up to 20% gain on speedup on average, while maintain the similar or even better quality, both objectively and subjectively. The proposed algorithm is also competitive with other fast algorithms.展开更多
A fast intra mode decision algorithm is proposed in this paper to reduce the complexity of H. 264 encoder. The proposed algorithm adopted the pre-processing method based on edge feature in pictures to filter out some ...A fast intra mode decision algorithm is proposed in this paper to reduce the complexity of H. 264 encoder. The proposed algorithm adopted the pre-processing method based on edge feature in pictures to filter out some impossible prediction modes. Context information and pre-computed threshold are used to determine whether it is necessary to check the DC mode. This method is able to get rid of most of candidate modes so that only 66--150 modes are left for the final mode decision, instead of 592 modes in the case of full search (FS) method of H. 264. Simulation results demonstrate that the coding time of the proposed algorithm falls down 71.7% compared with FS method, while the performance loss is trivial compared with FS mode decision scheme.展开更多
Motion estimation is an important part of H.264/AVC encoding progress, with high com- putational complexity. Therefore, it is quite necessary to find a fast motion estimation algorithm for real-time applications. The ...Motion estimation is an important part of H.264/AVC encoding progress, with high com- putational complexity. Therefore, it is quite necessary to find a fast motion estimation algorithm for real-time applications. The algorithm proposed in this letter adjudges the macroblocks activity degree first; then classifies different video sequences, and applies different search strategies according to the result. Experiments show that this method obtains almost the same video quality with the Full Search (FS) algorithm but with reduced more than 95% computation cost.展开更多
基金supported in part by the National Natural Science Foundation of China under Grants 62202496,62272478the Basic Frontier Innovation Project of Engineering university of People Armed Police under Grants WJY202314,WJY202221.
文摘The proposed robust reversible watermarking algorithm addresses the compatibility challenges between robustness and reversibility in existing video watermarking techniques by leveraging scene smoothness for frame grouping videos.Grounded in the H.264 video coding standard,the algorithm first employs traditional robust watermark stitching technology to embed watermark information in the low-frequency coefficient domain of the U channel.Subsequently,it utilizes histogram migration techniques in the high-frequency coefficient domain of the U channel to embed auxiliary information,enabling successful watermark extraction and lossless recovery of the original video content.Experimental results demonstrate the algorithm’s strong imperceptibility,with each embedded frame in the experimental videos achieving a mean peak signal-to-noise ratio of 49.3830 dB and a mean structural similarity of 0.9996.Compared with the three comparison algorithms,the performance of the two experimental indexes is improved by 7.59%and 0.4%on average.At the same time,the proposed algorithm has strong robustness to both offline and online attacks:In the face of offline attacks,the average normalized correlation coefficient between the extracted watermark and the original watermark is 0.9989,and the average bit error rate is 0.0089.In the face of online attacks,the normalized correlation coefficient between the extracted watermark and the original watermark is 0.8840,and the mean bit error rate is 0.2269.Compared with the three comparison algorithms,the performance of the two experimental indexes is improved by 1.27%and 18.16%on average,highlighting the algorithm’s robustness.Furthermore,the algorithm exhibits low computational complexity,with the mean encoding and the mean decoding time differentials during experimental video processing being 3.934 and 2.273 s,respectively,underscoring its practical utility.
基金Project (No. 60472040) supported by the National Natural Science Foundation of China
文摘With advanced prediction modes of intra prediction, intra coding of H.264/AVC offers significant coding gains compared with previous video coding standards. It uses an important tool called Lagrangian rate-distortion optimization (RDO)technique to decide the best coding mode for a block, but the computational burden is extremely high. In this paper, we proposed an improved fast intra prediction algorithm including block type selection and mode decision algorithm based on analysis of edge feature of a block. Our algorithm filters out unlikely block type and candidate modes to reduce the RDO calculations. Experimental results showed that the proposed algorithm can reduce the computation complexity of intra prediction from 52.90% to 56.31%, with 0.04 dB PSNR degradation and 2% increase of bit rate.
基金Project supported by the National Natural Science Foundation of China (No. 60573176)the Key Technologies R & D Program of Zhejiang Province (Nos. 2005C23047 and 2004C11052), China
文摘A fast mode decision algorithm is proposed in this paper to accelerate the process of transcoding videos into H.264with arbitrary rate spatial resolution down-scaling. The proposed algorithm consists of three steps. First, an early-stop technique is introduced to determine the 16× 16-mode blocks, which take up about 70% of all the macroblocks; then, a bottom-up merging process is performed to determine the mode of rest non-early-stopped blocks; and then, we adopt half-pixel motion estimation to further refine the acquired predictive motion vectors. In order to obtain the predictive motion vectors for early-stop and merging processes, we propose a motion vector composition scheme, which can reuse the information in the input pre-encoded videos to handle the spatial resolution down-scaling. Experimental results showed that our algorithm is about four times faster than the Cascaded-Decoder-Encoder method and has negligible PSNR drop and little bit rate increase.
基金the National Nature Science Foundation of China(No.90104013) 863 Project(No.2002AA119010, 2001AA121061 and 2002AA123041)
文摘This letter proposes a rate control algorithm for H.264 video encoder, which is based on block activity and buffer state. Experimental results indicate that it has an excellent performance by providing much accurate bit rate and better coding efficiency compared with H.264. The computational complexity of the algorithm is reduced by adopting a novel block activity description method using the Sum of Absolute Difference (SAD) of 16× 16 mode, and its robustness is enhanced by introducing a feedback circuit at frame layer.
基金supported by the National Natural Science Foundation of China (60902101)Fundmental Research Foundation of North-western Polytechnical University (JC200913)
文摘H.264/AVC video coding standard can achieve roughly half of the bit-savings over MPEG2 and MPEG4 for a given quality. However, this comes at a cost in considerably increased complexity at the encoder and thus increases the difficulty in hardware implementation. The high redundancy that exists between the successive frames of a video sequence makes it possible to achieve a high data compression ratio. Motion estimation (ME) plays an important role in motion compensated video coding. A fast motion estimation algorithm for H.264/AVC is proposed based on centered prediction, called centered prediction based fast mixed search algorithm (CPFMS). It makes use of the spatial and temporal correlation in motion vector (MV) fields and feature of all-zero blocks to accelerate the searching process. With the initialized searching point prediction, adaptive search window changing and searching direction decision, CPFMS is provided to reduce computation in block-matching process. The experimental results show that the speed of CPFMS is nearly 12 times of FS with a negligible peak signal-noise ratio (PSNR) loss. Also, the efficiency of CPFMS outperforms some popular fast algorithms such as hybrid unsymmetrical cross multi-hexagongrid search and a novel multidirectional gradient descent search evidently.
文摘The transmission of video content over a network raises various issues relating to copyright authenticity,ethics,legality,and privacy.The protection of copyrighted video content is a significant issue in the video industry,and it is essential to find effective solutions to prevent tampering and modification of digital video content during its transmission through digital media.However,there are stillmany unresolved challenges.This paper aims to address those challenges by proposing a new technique for detectingmoving objects in digital videos,which can help prove the credibility of video content by detecting any fake objects inserted by hackers.The proposed technique involves using two methods,the H.264 and the extraction color features methods,to embed and extract watermarks in video frames.The study tested the performance of the system against various attacks and found it to be robust.The evaluation was done using different metrics such as Peak-Signal-to-Noise Ratio(PSNR),Mean Squared Error(MSE),Structural Similarity Index Measure(SSIM),Bit Correction Ratio(BCR),and Normalized Correlation.The accuracy of identifying moving objects was high,ranging from 96.3%to 98.7%.The system was also able to embed a fragile watermark with a success rate of over 93.65%and had an average capacity of hiding of 78.67.The reconstructed video frames had high quality with a PSNR of at least 65.45 dB and SSIMof over 0.97,making them imperceptible to the human eye.The system also had an acceptable average time difference(T=1.227/s)compared with other state-of-the-art methods.
基金This work has been supported by Talent Supporting Project ofMinistry of Education of China (Grant No: NCET-05-0897)Scientific Research Project for Universities in Xinjiang (GrantNo: XJEDU2004E02 and XJEDU2006I10).
文摘A fast quarter-pixel motion estimation algorithm is proposed in this paper. The proposed algorithm based on mathematical models of the motion compensated prediction errors. Unlike conventional quarter-pixel accurate motion estimation algorithm, proposed algorithm can avoid fractional-pixel interpolation and subsequent fractional-pixel search after integer-precision motion estimation. Experiments show that the proposed algorithm greatly reduces the computational complexity of quarter- pixel motion estimation, while keeping the nearly equal quality of the
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61872384 and U1636114)partly supported by the Natural Science Foundation of Engineering University of PAP(Grant No.WJY201915).
文摘H.264/AVC video is one of the most popular multimedia and has been widely used as the carriers of video steganography.In this paper,a novel motion vector(MV)based steganographic algorithm is proposed for the H.264/AVC compressed video without distortion.Four modules are introduced to eliminate the distortion caused by the modifications of motion vectors and guarantee the security of the algorithm.In the embedding block,the motion vector space encoding is used to embed a(2n+1)-ary notational number into an n-dimension vector composed of motion vectors generated from the selection block.Scrambling is adopted to disturb the order of steganographic carriers to improve the randomness of the carrier before the operation of embedding.The re-motion compensation(re-MC)block will re-construct the macroblock(MB)whose motion vectors have been modified by embedding block.System block plays the role of the generator for chaotic sequences and encryptor for secret data.Experimental results demonstrate that our proposed algorithm can achieve high embedding capacity without stego video visual quality distortion,it also presents good undetectability for existing MV-based steganalysis feature.Performance comparisons with other existing algorithms are provided to demonstrate the superiority of the proposed algorithm.
基金National Natural Science Foundation of China (60372018)
文摘In order to reduce the encoding complexity of macroblock coding mode decision in H.264/AVC, a selective smaller block-size searching algorithm and a selective intra coding mode searching algorithm are proposed by using the high correlation among coding modes and in spatial and temporal domains of video sequence. Simulation results demonstrate that the proposed algorithm can provide significant improvement in computational requirement, with negligible small picture quality degradation and slight bit rate increase.
基金Supported by the National High Technology Research and Development Program of China (2001AA132050-03)the Key Foundation of Ministry of Education of China (211CERS-10)
文摘Diamond search (DS) is an excellent fast block matching motion estimation (BMME) algorithm. In this paper, we propose an improved diamond search (IDS) algorithm, which revises the two search patterns of DS. The proposed algorithm is compared with several mainstream algorithms. The simulation results show that the proposed algorithm over DS can be up to 20% gain on speedup on average, while maintain the similar or even better quality, both objectively and subjectively. The proposed algorithm is also competitive with other fast algorithms.
文摘A fast intra mode decision algorithm is proposed in this paper to reduce the complexity of H. 264 encoder. The proposed algorithm adopted the pre-processing method based on edge feature in pictures to filter out some impossible prediction modes. Context information and pre-computed threshold are used to determine whether it is necessary to check the DC mode. This method is able to get rid of most of candidate modes so that only 66--150 modes are left for the final mode decision, instead of 592 modes in the case of full search (FS) method of H. 264. Simulation results demonstrate that the coding time of the proposed algorithm falls down 71.7% compared with FS method, while the performance loss is trivial compared with FS mode decision scheme.
文摘Motion estimation is an important part of H.264/AVC encoding progress, with high com- putational complexity. Therefore, it is quite necessary to find a fast motion estimation algorithm for real-time applications. The algorithm proposed in this letter adjudges the macroblocks activity degree first; then classifies different video sequences, and applies different search strategies according to the result. Experiments show that this method obtains almost the same video quality with the Full Search (FS) algorithm but with reduced more than 95% computation cost.