H.264/AVC video coding standard can achieve roughly half of the bit-savings over MPEG2 and MPEG4 for a given quality. However, this comes at a cost in considerably increased complexity at the encoder and thus increase...H.264/AVC video coding standard can achieve roughly half of the bit-savings over MPEG2 and MPEG4 for a given quality. However, this comes at a cost in considerably increased complexity at the encoder and thus increases the difficulty in hardware implementation. The high redundancy that exists between the successive frames of a video sequence makes it possible to achieve a high data compression ratio. Motion estimation (ME) plays an important role in motion compensated video coding. A fast motion estimation algorithm for H.264/AVC is proposed based on centered prediction, called centered prediction based fast mixed search algorithm (CPFMS). It makes use of the spatial and temporal correlation in motion vector (MV) fields and feature of all-zero blocks to accelerate the searching process. With the initialized searching point prediction, adaptive search window changing and searching direction decision, CPFMS is provided to reduce computation in block-matching process. The experimental results show that the speed of CPFMS is nearly 12 times of FS with a negligible peak signal-noise ratio (PSNR) loss. Also, the efficiency of CPFMS outperforms some popular fast algorithms such as hybrid unsymmetrical cross multi-hexagongrid search and a novel multidirectional gradient descent search evidently.展开更多
A novel fast sub-pixel search algorithm is proposed to accelerate sub-pixel search. Based on the features of predicted motion vector (PMV) and texture direction observed, the proposed method effectively filters out im...A novel fast sub-pixel search algorithm is proposed to accelerate sub-pixel search. Based on the features of predicted motion vector (PMV) and texture direction observed, the proposed method effectively filters out impossible points and thus decreases 11 searched points in average during the sub-pixel search stage. A threshold is also adopted to early terminate the sub-pixel search. Simulation results show that the proposed method can achieve up to 4.8 times faster than full sub-pixel motion search scheme (FSPS) with less than 0.025 dB PSNR losses and 2.2% bit-length increases.展开更多
Motion estimation is an important part of H.264/AVC encoding progress, with high com- putational complexity. Therefore, it is quite necessary to find a fast motion estimation algorithm for real-time applications. The ...Motion estimation is an important part of H.264/AVC encoding progress, with high com- putational complexity. Therefore, it is quite necessary to find a fast motion estimation algorithm for real-time applications. The algorithm proposed in this letter adjudges the macroblocks activity degree first; then classifies different video sequences, and applies different search strategies according to the result. Experiments show that this method obtains almost the same video quality with the Full Search (FS) algorithm but with reduced more than 95% computation cost.展开更多
A fast motion estimation algorithm for variable block-size using the "line scan and block merge procedure" is proposed for airborne image compression modules.Full hardware implementation via FPGA is discussed in det...A fast motion estimation algorithm for variable block-size using the "line scan and block merge procedure" is proposed for airborne image compression modules.Full hardware implementation via FPGA is discussed in detail.The proposed pipelined architecture based on the line scan algorithm is capable of calculating the required 41 motion vectors of various size blocks supported by H.264 within a 16 × 16 block in parallel.An adaptive rate distortion cost function is used for various size block decision.The motion vectors of adjacent small blocks are merged to predict the motion vectors of larger blocks for reducing computation.Experimental results show that our proposed method has lower computational complexity than full search algorithm with slight quality decrease and little bit rate increase.Due to the high real-time processing speed it can be easily realized in hardware.展开更多
Motion Estimation (ME) is considerate one of the most important compression methods. However, ME involves high computational complexity. The main goal is to reduce power conception and the execution time without red...Motion Estimation (ME) is considerate one of the most important compression methods. However, ME involves high computational complexity. The main goal is to reduce power conception and the execution time without reducing image quality. In this paper, the authors have proposed high parallel processing architecture is presented for four-step search block-matching motion estimation. The proposed method is based on the stoppable clock models. The architecture has been simulated and synthesized with VHDL and ASIC (CMOS 45 nm). Synthesize results show that the proposed architecture reduces the power consumption and achieves a high performance for real time motion estimation.展开更多
JM模型是JVT(joint video team)发布的H.264标准测试模型,对算法学习和研究有着重要的意义。根据JM测试模型的参数设定,其中的运动估计算法有3种可选模式。本文结合JM10.2的源代码对UMHexagonS算法进行了分析,并对该算法进行改进,能够...JM模型是JVT(joint video team)发布的H.264标准测试模型,对算法学习和研究有着重要的意义。根据JM测试模型的参数设定,其中的运动估计算法有3种可选模式。本文结合JM10.2的源代码对UMHexagonS算法进行了分析,并对该算法进行改进,能够在保证视频序列各分量信噪比的情况下缩短运动估计的耗时。本文利用UMHexagonS算法的准确预测以及运动估计代价的相关性来设置阈值达到提前结束搜索的目的。在JM10.2的测试模型上进行了算法验证。实验结果表明,利用块与块之间运动估计代价的相关性,在保证编码性能的同时,可以减少运动估计所需时间的10%以上。展开更多
基金supported by the National Natural Science Foundation of China (60902101)Fundmental Research Foundation of North-western Polytechnical University (JC200913)
文摘H.264/AVC video coding standard can achieve roughly half of the bit-savings over MPEG2 and MPEG4 for a given quality. However, this comes at a cost in considerably increased complexity at the encoder and thus increases the difficulty in hardware implementation. The high redundancy that exists between the successive frames of a video sequence makes it possible to achieve a high data compression ratio. Motion estimation (ME) plays an important role in motion compensated video coding. A fast motion estimation algorithm for H.264/AVC is proposed based on centered prediction, called centered prediction based fast mixed search algorithm (CPFMS). It makes use of the spatial and temporal correlation in motion vector (MV) fields and feature of all-zero blocks to accelerate the searching process. With the initialized searching point prediction, adaptive search window changing and searching direction decision, CPFMS is provided to reduce computation in block-matching process. The experimental results show that the speed of CPFMS is nearly 12 times of FS with a negligible peak signal-noise ratio (PSNR) loss. Also, the efficiency of CPFMS outperforms some popular fast algorithms such as hybrid unsymmetrical cross multi-hexagongrid search and a novel multidirectional gradient descent search evidently.
基金Supported by Electronic Information Industry Foundation of China (No.[2005]635) .
文摘A novel fast sub-pixel search algorithm is proposed to accelerate sub-pixel search. Based on the features of predicted motion vector (PMV) and texture direction observed, the proposed method effectively filters out impossible points and thus decreases 11 searched points in average during the sub-pixel search stage. A threshold is also adopted to early terminate the sub-pixel search. Simulation results show that the proposed method can achieve up to 4.8 times faster than full sub-pixel motion search scheme (FSPS) with less than 0.025 dB PSNR losses and 2.2% bit-length increases.
文摘Motion estimation is an important part of H.264/AVC encoding progress, with high com- putational complexity. Therefore, it is quite necessary to find a fast motion estimation algorithm for real-time applications. The algorithm proposed in this letter adjudges the macroblocks activity degree first; then classifies different video sequences, and applies different search strategies according to the result. Experiments show that this method obtains almost the same video quality with the Full Search (FS) algorithm but with reduced more than 95% computation cost.
基金Supported by the Aviation Science Fund of China(2009ZC15001)
文摘A fast motion estimation algorithm for variable block-size using the "line scan and block merge procedure" is proposed for airborne image compression modules.Full hardware implementation via FPGA is discussed in detail.The proposed pipelined architecture based on the line scan algorithm is capable of calculating the required 41 motion vectors of various size blocks supported by H.264 within a 16 × 16 block in parallel.An adaptive rate distortion cost function is used for various size block decision.The motion vectors of adjacent small blocks are merged to predict the motion vectors of larger blocks for reducing computation.Experimental results show that our proposed method has lower computational complexity than full search algorithm with slight quality decrease and little bit rate increase.Due to the high real-time processing speed it can be easily realized in hardware.
文摘Motion Estimation (ME) is considerate one of the most important compression methods. However, ME involves high computational complexity. The main goal is to reduce power conception and the execution time without reducing image quality. In this paper, the authors have proposed high parallel processing architecture is presented for four-step search block-matching motion estimation. The proposed method is based on the stoppable clock models. The architecture has been simulated and synthesized with VHDL and ASIC (CMOS 45 nm). Synthesize results show that the proposed architecture reduces the power consumption and achieves a high performance for real time motion estimation.
文摘JM模型是JVT(joint video team)发布的H.264标准测试模型,对算法学习和研究有着重要的意义。根据JM测试模型的参数设定,其中的运动估计算法有3种可选模式。本文结合JM10.2的源代码对UMHexagonS算法进行了分析,并对该算法进行改进,能够在保证视频序列各分量信噪比的情况下缩短运动估计的耗时。本文利用UMHexagonS算法的准确预测以及运动估计代价的相关性来设置阈值达到提前结束搜索的目的。在JM10.2的测试模型上进行了算法验证。实验结果表明,利用块与块之间运动估计代价的相关性,在保证编码性能的同时,可以减少运动估计所需时间的10%以上。