The proposed robust reversible watermarking algorithm addresses the compatibility challenges between robustness and reversibility in existing video watermarking techniques by leveraging scene smoothness for frame grou...The proposed robust reversible watermarking algorithm addresses the compatibility challenges between robustness and reversibility in existing video watermarking techniques by leveraging scene smoothness for frame grouping videos.Grounded in the H.264 video coding standard,the algorithm first employs traditional robust watermark stitching technology to embed watermark information in the low-frequency coefficient domain of the U channel.Subsequently,it utilizes histogram migration techniques in the high-frequency coefficient domain of the U channel to embed auxiliary information,enabling successful watermark extraction and lossless recovery of the original video content.Experimental results demonstrate the algorithm’s strong imperceptibility,with each embedded frame in the experimental videos achieving a mean peak signal-to-noise ratio of 49.3830 dB and a mean structural similarity of 0.9996.Compared with the three comparison algorithms,the performance of the two experimental indexes is improved by 7.59%and 0.4%on average.At the same time,the proposed algorithm has strong robustness to both offline and online attacks:In the face of offline attacks,the average normalized correlation coefficient between the extracted watermark and the original watermark is 0.9989,and the average bit error rate is 0.0089.In the face of online attacks,the normalized correlation coefficient between the extracted watermark and the original watermark is 0.8840,and the mean bit error rate is 0.2269.Compared with the three comparison algorithms,the performance of the two experimental indexes is improved by 1.27%and 18.16%on average,highlighting the algorithm’s robustness.Furthermore,the algorithm exhibits low computational complexity,with the mean encoding and the mean decoding time differentials during experimental video processing being 3.934 and 2.273 s,respectively,underscoring its practical utility.展开更多
The transmission of video content over a network raises various issues relating to copyright authenticity,ethics,legality,and privacy.The protection of copyrighted video content is a significant issue in the video ind...The transmission of video content over a network raises various issues relating to copyright authenticity,ethics,legality,and privacy.The protection of copyrighted video content is a significant issue in the video industry,and it is essential to find effective solutions to prevent tampering and modification of digital video content during its transmission through digital media.However,there are stillmany unresolved challenges.This paper aims to address those challenges by proposing a new technique for detectingmoving objects in digital videos,which can help prove the credibility of video content by detecting any fake objects inserted by hackers.The proposed technique involves using two methods,the H.264 and the extraction color features methods,to embed and extract watermarks in video frames.The study tested the performance of the system against various attacks and found it to be robust.The evaluation was done using different metrics such as Peak-Signal-to-Noise Ratio(PSNR),Mean Squared Error(MSE),Structural Similarity Index Measure(SSIM),Bit Correction Ratio(BCR),and Normalized Correlation.The accuracy of identifying moving objects was high,ranging from 96.3%to 98.7%.The system was also able to embed a fragile watermark with a success rate of over 93.65%and had an average capacity of hiding of 78.67.The reconstructed video frames had high quality with a PSNR of at least 65.45 dB and SSIMof over 0.97,making them imperceptible to the human eye.The system also had an acceptable average time difference(T=1.227/s)compared with other state-of-the-art methods.展开更多
在2003年制定的H.264/AVC视频编码标准获得巨大的成功后,新一代视频编码国际标准HEVC(High Ef-ficiency Video Coding)在ITU-T的VCEG和ISO/IEC的MPEG通力合作下已经开发成功。HEVC提供了多项先进的视频编码技术。尽管HEVC的视频编码层...在2003年制定的H.264/AVC视频编码标准获得巨大的成功后,新一代视频编码国际标准HEVC(High Ef-ficiency Video Coding)在ITU-T的VCEG和ISO/IEC的MPEG通力合作下已经开发成功。HEVC提供了多项先进的视频编码技术。尽管HEVC的视频编码层结构仍然是常见的基于块运动补偿的混合视频编码模式,但是和先前的标准相比具有多处重要改进。文中对HEVC标准的技术的主要特点和性能进行了综述。展开更多
基金supported in part by the National Natural Science Foundation of China under Grants 62202496,62272478the Basic Frontier Innovation Project of Engineering university of People Armed Police under Grants WJY202314,WJY202221.
文摘The proposed robust reversible watermarking algorithm addresses the compatibility challenges between robustness and reversibility in existing video watermarking techniques by leveraging scene smoothness for frame grouping videos.Grounded in the H.264 video coding standard,the algorithm first employs traditional robust watermark stitching technology to embed watermark information in the low-frequency coefficient domain of the U channel.Subsequently,it utilizes histogram migration techniques in the high-frequency coefficient domain of the U channel to embed auxiliary information,enabling successful watermark extraction and lossless recovery of the original video content.Experimental results demonstrate the algorithm’s strong imperceptibility,with each embedded frame in the experimental videos achieving a mean peak signal-to-noise ratio of 49.3830 dB and a mean structural similarity of 0.9996.Compared with the three comparison algorithms,the performance of the two experimental indexes is improved by 7.59%and 0.4%on average.At the same time,the proposed algorithm has strong robustness to both offline and online attacks:In the face of offline attacks,the average normalized correlation coefficient between the extracted watermark and the original watermark is 0.9989,and the average bit error rate is 0.0089.In the face of online attacks,the normalized correlation coefficient between the extracted watermark and the original watermark is 0.8840,and the mean bit error rate is 0.2269.Compared with the three comparison algorithms,the performance of the two experimental indexes is improved by 1.27%and 18.16%on average,highlighting the algorithm’s robustness.Furthermore,the algorithm exhibits low computational complexity,with the mean encoding and the mean decoding time differentials during experimental video processing being 3.934 and 2.273 s,respectively,underscoring its practical utility.
文摘The transmission of video content over a network raises various issues relating to copyright authenticity,ethics,legality,and privacy.The protection of copyrighted video content is a significant issue in the video industry,and it is essential to find effective solutions to prevent tampering and modification of digital video content during its transmission through digital media.However,there are stillmany unresolved challenges.This paper aims to address those challenges by proposing a new technique for detectingmoving objects in digital videos,which can help prove the credibility of video content by detecting any fake objects inserted by hackers.The proposed technique involves using two methods,the H.264 and the extraction color features methods,to embed and extract watermarks in video frames.The study tested the performance of the system against various attacks and found it to be robust.The evaluation was done using different metrics such as Peak-Signal-to-Noise Ratio(PSNR),Mean Squared Error(MSE),Structural Similarity Index Measure(SSIM),Bit Correction Ratio(BCR),and Normalized Correlation.The accuracy of identifying moving objects was high,ranging from 96.3%to 98.7%.The system was also able to embed a fragile watermark with a success rate of over 93.65%and had an average capacity of hiding of 78.67.The reconstructed video frames had high quality with a PSNR of at least 65.45 dB and SSIMof over 0.97,making them imperceptible to the human eye.The system also had an acceptable average time difference(T=1.227/s)compared with other state-of-the-art methods.
文摘在2003年制定的H.264/AVC视频编码标准获得巨大的成功后,新一代视频编码国际标准HEVC(High Ef-ficiency Video Coding)在ITU-T的VCEG和ISO/IEC的MPEG通力合作下已经开发成功。HEVC提供了多项先进的视频编码技术。尽管HEVC的视频编码层结构仍然是常见的基于块运动补偿的混合视频编码模式,但是和先前的标准相比具有多处重要改进。文中对HEVC标准的技术的主要特点和性能进行了综述。