An approach was presented to characterize the stress response of workpiece in hard machining, accounting for the effect of the initial workpiece hardness in addition to temperature, strain and strain rate on flow stre...An approach was presented to characterize the stress response of workpiece in hard machining, accounting for the effect of the initial workpiece hardness in addition to temperature, strain and strain rate on flow stress in this paper. AISI H13 die steel was chosen to verify this methodology. The proposed flow stress model demonstrates a good agreement with experimental data. Therefore, the proposed model can be used to predict the corresponding flow stress-strain response ofAISl H13 die steel with variation of the initial workpiece hardness in hard machining.展开更多
Larger-sized primary carbides lead to stress concentration during the application of H13 hot-work die steel,resulting in microcracks and fatigue failure.Rare earth was usually added to modify the carbides and inclusio...Larger-sized primary carbides lead to stress concentration during the application of H13 hot-work die steel,resulting in microcracks and fatigue failure.Rare earth was usually added to modify the carbides and inclusions.The existing literature is reviewed on the effect of rare earth on primary carbides in H13 steel.A comprehensive review on the effect of rare earth on the characteristics of primary carbides,i.e.,number,size,morphology,and thermal stability in H13 steel,was done.The precipitation mechanism and nucleation of primary carbides with rare earth were summarized.The position and form of rare earth in steel and their effects on alloying elements segregation were reviewed.The addition techniques of rare earth in H13 steel were compared,and the prospects for other uncommon rare earth and emerging technology were present.Based on the current references,it can be known that adding rare earth facilitated refined and dispersed primary carbides.The size of primary carbides would be reduced,and their morphology would be improved because the rare earth inclusions formed in H13 steel can act as nucleation cores forγ-Fe orδ-Fe,refining the dendritic structure.Besides,the number of primary carbides at grain boundaries would be significantly reduced.However,rare earth had little impact on thermal stability.The nucleation of primary carbides tended to be inhibited due to the modification of inclusions by rare earth which were likely to be nucleation cores for primary carbides.Rare earth had been reported to affect the mechanism and process of primary carbide precipitation.Additionally,the addition of rare earth can inhibit the segregation of alloying elements and carbon diffusion by calculation.Thus,laboratory experiments and theoretical calcu-lations need to be conducted to study the states and evolution of rare earth steels.展开更多
Laboratory-scale experiments were conducted to investigate the oxygen content of Si-deoxidized H13 die steel by ferrous oxide-containing slags at 1873 K.The calculation of thermodynamics and kinetics was performed to ...Laboratory-scale experiments were conducted to investigate the oxygen content of Si-deoxidized H13 die steel by ferrous oxide-containing slags at 1873 K.The calculation of thermodynamics and kinetics was performed to evaluate the oxygen level of molten steel through[Si]-[O]equilibrium and[Fe]-[O]equilibrium.The results show that as the FeO content in slag increases,the oxygen content with[Si]-[O]equilibrium(w([O])Si)has almost no change.When both the oxygen content with[Fe]-[O]equilibrium(w([O])Fe)and w([O])Si are less than the initial oxygen content in steel(w(TO)i),the oxygen content in steel(w([O]))depends on the higher value between w([O])Si and w([O])Fe.In the case of w([O])Fe>w(TO)i,the value of w([O])is the difference between the sum of w(TO)i and w([O])Si and the value of w([O])Fe.The reaction rates of[Si]-[O]and[Fe]-[O]are equal,which are controlled by the mass transfer of oxygen in molten steel.The evaluation method is suitable to the whole smelting process of Si-deoxidized H13 die steel.展开更多
Plasma boriding treatment was carried out at low temperature for the hot work die steel H13 assisted by surface nanocrystallization technology in this paper.At the same time,the thermal fatigue property of it was inve...Plasma boriding treatment was carried out at low temperature for the hot work die steel H13 assisted by surface nanocrystallization technology in this paper.At the same time,the thermal fatigue property of it was investigated through thermal fatigue testing with 3000 continuous cycles from room temperature to 700℃.The changes of structure and grain size in surface layer were characterized by high-resolution transmission electron microscopy(HRTEM).After plasma boriding at 580℃ for 4 h,the phase composition,morphology and in-situ nanomechanical property of boride layer were investigated by X-ray diffraction spectroscopy(XRD),scanning electron microscope(SEM),nanoindentation test,respectively.The results show that the boride layer with about thickness of 5μm is composed with two phases of Fe2B and FeB.The nanohardness of boride layer is as high as 21 GPa.Furthermore,thermal fatigue testing shows that the boride layer with excellent oxidation resistance and mechanical strength at elevated temperatures could effectively delay the crack initiation and impede the crack propagation.Therefore,the thermal fatigue property of H13 can be remarkably improved.展开更多
基金the Natural Science Foundation of Jiangxi Province(No.550067)the National Natural Science Foundation of China(No.50465003)Foundation of the State Key Laboratory of Plastic Forming Simulation and Die & Mould Technology(No.06-3)
文摘An approach was presented to characterize the stress response of workpiece in hard machining, accounting for the effect of the initial workpiece hardness in addition to temperature, strain and strain rate on flow stress in this paper. AISI H13 die steel was chosen to verify this methodology. The proposed flow stress model demonstrates a good agreement with experimental data. Therefore, the proposed model can be used to predict the corresponding flow stress-strain response ofAISl H13 die steel with variation of the initial workpiece hardness in hard machining.
基金supported by the National Natural Science Foundation of China(Grant Nos.52064011 and 52274331)Guizhou Provincial Basic Research Program(Natural Science)(Nos.ZK[2021]258 and ZK[2022]Zhongdian 023)+1 种基金Guizhou Provincial Program on Commercialization of Scientific and Technological Achievements(No.[2022]089)Natural Science Research Project of Guizhou Provincial Department of Education(No.[2022]041).
文摘Larger-sized primary carbides lead to stress concentration during the application of H13 hot-work die steel,resulting in microcracks and fatigue failure.Rare earth was usually added to modify the carbides and inclusions.The existing literature is reviewed on the effect of rare earth on primary carbides in H13 steel.A comprehensive review on the effect of rare earth on the characteristics of primary carbides,i.e.,number,size,morphology,and thermal stability in H13 steel,was done.The precipitation mechanism and nucleation of primary carbides with rare earth were summarized.The position and form of rare earth in steel and their effects on alloying elements segregation were reviewed.The addition techniques of rare earth in H13 steel were compared,and the prospects for other uncommon rare earth and emerging technology were present.Based on the current references,it can be known that adding rare earth facilitated refined and dispersed primary carbides.The size of primary carbides would be reduced,and their morphology would be improved because the rare earth inclusions formed in H13 steel can act as nucleation cores forγ-Fe orδ-Fe,refining the dendritic structure.Besides,the number of primary carbides at grain boundaries would be significantly reduced.However,rare earth had little impact on thermal stability.The nucleation of primary carbides tended to be inhibited due to the modification of inclusions by rare earth which were likely to be nucleation cores for primary carbides.Rare earth had been reported to affect the mechanism and process of primary carbide precipitation.Additionally,the addition of rare earth can inhibit the segregation of alloying elements and carbon diffusion by calculation.Thus,laboratory experiments and theoretical calcu-lations need to be conducted to study the states and evolution of rare earth steels.
基金support from the National Natural Science Foundation for Young Scientists of China(51704021)Fundamental Research Funds for the Central Universities(FRF-TP-20-004A3,FRF-TP-19-030A2,and FRF-TP-16-079A1).
文摘Laboratory-scale experiments were conducted to investigate the oxygen content of Si-deoxidized H13 die steel by ferrous oxide-containing slags at 1873 K.The calculation of thermodynamics and kinetics was performed to evaluate the oxygen level of molten steel through[Si]-[O]equilibrium and[Fe]-[O]equilibrium.The results show that as the FeO content in slag increases,the oxygen content with[Si]-[O]equilibrium(w([O])Si)has almost no change.When both the oxygen content with[Fe]-[O]equilibrium(w([O])Fe)and w([O])Si are less than the initial oxygen content in steel(w(TO)i),the oxygen content in steel(w([O]))depends on the higher value between w([O])Si and w([O])Fe.In the case of w([O])Fe>w(TO)i,the value of w([O])is the difference between the sum of w(TO)i and w([O])Si and the value of w([O])Fe.The reaction rates of[Si]-[O]and[Fe]-[O]are equal,which are controlled by the mass transfer of oxygen in molten steel.The evaluation method is suitable to the whole smelting process of Si-deoxidized H13 die steel.
基金Supported by Shanghai Leading Academic Discipline Project(S30107)
文摘Plasma boriding treatment was carried out at low temperature for the hot work die steel H13 assisted by surface nanocrystallization technology in this paper.At the same time,the thermal fatigue property of it was investigated through thermal fatigue testing with 3000 continuous cycles from room temperature to 700℃.The changes of structure and grain size in surface layer were characterized by high-resolution transmission electron microscopy(HRTEM).After plasma boriding at 580℃ for 4 h,the phase composition,morphology and in-situ nanomechanical property of boride layer were investigated by X-ray diffraction spectroscopy(XRD),scanning electron microscope(SEM),nanoindentation test,respectively.The results show that the boride layer with about thickness of 5μm is composed with two phases of Fe2B and FeB.The nanohardness of boride layer is as high as 21 GPa.Furthermore,thermal fatigue testing shows that the boride layer with excellent oxidation resistance and mechanical strength at elevated temperatures could effectively delay the crack initiation and impede the crack propagation.Therefore,the thermal fatigue property of H13 can be remarkably improved.