This study aims to optimize the influence of the inlet inclination angle on the Indoor Air Quality(IAQ),heat,and temperature distribution in mixed convection within a two-dimensional square cavityfilled with an air-CO_(...This study aims to optimize the influence of the inlet inclination angle on the Indoor Air Quality(IAQ),heat,and temperature distribution in mixed convection within a two-dimensional square cavityfilled with an air-CO_(2)mixture.The air-CO_(2)mixture enters the cavity through two inlet openings positioned at the top wall,which is set at the ambient temperature(TC).Three values of the Reynolds numbers,ranging from 1000 to 2000,are considered,while the Prandtl number is kept constant(Pr=0.71).The temperature distribution and streamlines are shown for Rayleigh number(Ra)equal to 104,three inlet inclination anglesϕ(0,π/6 andπ/4)and three CO_(2)concentrations values(1500,2500,3500 ppm)applied at both hot vertical walls(maintained at a constant temperature TH).Afinite volume method is used under the assumption of two-dimensional laminarflow to solve the NavierStokes and energy equations.The results indicate that inlet inclination angle has an impact on the indoor air quality(IAQ),which,in turn,affects the heat transfer distribution and thermal comfort within the cavity.展开更多
The non-chain chemical HF(DF)laser is one of the most powerful electrically-driven lasers operating in mid-infrared,in which SF6-C2H6 mixtures are often used as lasering media.Due to the electronegativity of SF6,the d...The non-chain chemical HF(DF)laser is one of the most powerful electrically-driven lasers operating in mid-infrared,in which SF6-C2H6 mixtures are often used as lasering media.Due to the electronegativity of SF6,the discharge in SF6-C2H6 presents a complicated discharge mode.To achieve reproducible pulsed laser output,pulsed discharge in SF6-C2H6 mixtures is investigated for discharge mode using plane electrodes assisted by array pre-ionization spark pins in cathode surface.Firstly,two modes can be distinguished.One mode is called the selfsustained volume discharge(SSVD),which is characterized by spatial uniformity in the discharge gap and pulse to pulse repeatability.On the contrary,another mode includes random arc passages in the discharge gap and therefore cannot conduct lasering.By varying discharge conditions(gap voltage,gas pressure,etc)two discharge modes are observed.Secondly,the holding scope of the SSVD mode is analyzed for the optimal mixture ratio of 20:1,and the boundary tend of the holding scope of SSVD indicates there exists maximum gas pressure and maximum charging voltage for SSVD.Finally,the peak current of SSVD relates positively to charging voltage,while negatively to gas pressure,from which it is drawn that synchronous electron avalanches initiated by the sliding array overlap spatially into SSVD and thus SSVD is essentially an α ionization avalanche.展开更多
Seven types of activated carbon were used to investigate the effect of their structure on separation of CO2 from(H2 + CO2) gas mixture by the adsorption method at ambient temperature and higher pressures. The resul...Seven types of activated carbon were used to investigate the effect of their structure on separation of CO2 from(H2 + CO2) gas mixture by the adsorption method at ambient temperature and higher pressures. The results showed that the limiting factors for separation of CO2 from 53.6 mol% H2 + 46.4 mol% CO2 mixture and from 85.1 mol% H2 + 14.9 mol% CO2 mixture were different at 20 °C and about 2 MPa. The best separation result could be achieved when the pore diameter of the activated carbon ranged from 0.77 to 1.20 nm, and the median particle size was about2.07 lm for 53.6 mol% H2 + 46.4 mol% CO2 mixture and 1.41 lm for 85.1 mol% H2 + 14.9 mol% CO2 mixture. The effect of specific area and pore diameter of activated carbon on separation CO2 from 53.6 mol% H2 + 46.4 mol% CO2 mixture was more significant than that from 85.1 mol% H2 + 14.9 mol% CO2 mixture. CO2 in the gas phase can be decreased from 46.4 mol% to 2.3 mol%–4.3 mol% with a two-stage separation process.展开更多
The corrosion of an Fe-based alloy containing 15 wt pct Y in H2-H2S mixtures under 10-3 Pa S2 was studied at 600~800℃ in an attempt to find materials with improved sulphidation resistance with respect to pure Fe. The...The corrosion of an Fe-based alloy containing 15 wt pct Y in H2-H2S mixtures under 10-3 Pa S2 was studied at 600~800℃ in an attempt to find materials with improved sulphidation resistance with respect to pure Fe. The presence of Y has been shown to be beneflcial, but not sufficient to the level expected. In fact, the alloy is able to form at all tested temperatures an external FeS layer, beneath which a zone containing a mixture of the two sulphides is also present. Thus,Fe can still diffuse through this region to form the outer FeS layer with non-negligible rate. The corrosion rate of Fe is considerably reduced by the Y addition. but the alloy corrodes still much more rapidly than Y. The sulphidation kinetics is generally rather irregular for both the pure metals, while the corrosion rate of the alloy decreases with time and tends to become parabolic after an initial period of 12~17 h. The sulphidation behaviour of the alloys is discussed by taking into account the presence of an intermetallic compound Fe17Y2 and the limited solubility of Y in Fe展开更多
Monte Carlo simulations are adopted to study the electron motion in the mixture of H2 and CH4 during diamond synthesis via Glow Plasma-assisted Chemical Vapor Deposition (GPCVD). The non-uniform electric field is used...Monte Carlo simulations are adopted to study the electron motion in the mixture of H2 and CH4 during diamond synthesis via Glow Plasma-assisted Chemical Vapor Deposition (GPCVD). The non-uniform electric field is used and the avalanche of electrons is taken into account in this simulation. The average energy distribution of electrons and the space distribution of effective species such as CH3, CH+3, CH+ and H at various gas pressures are given in this paper, and optimum experimental conditions are inferred from these results.展开更多
A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performa...A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performance of the fuel cell was dependent on anode compartment H2S flow rate and concentration. The cell open-circuit voltage increased with increasing H2S flow rate. It was found that increasing both H2S flow rate and H2S concentration improved current-voltage and power density performance. This is resulted from improved gas diffusion in anode and increased concentration of anodic electroactive species. Operation at elevated H2S concentration improved the cell performance at a given gas flow rate. However, as low as 5% H2S in gas mixture can also be utilized as fuel feed to cells. Highest current and power densities, 17500mA·cm-2 and 200mW·cm-2, are obtained with pure H2S flow rate of 50ml·min-1 and air flow rate of 100ml·min-1 at 850℃.展开更多
Phase behavior of carbon dioxide/water binary mixtures plays an important role in various CO2-based industry processes. This work aims to screen a thermodynamic model out of a number of promising candidate models to c...Phase behavior of carbon dioxide/water binary mixtures plays an important role in various CO2-based industry processes. This work aims to screen a thermodynamic model out of a number of promising candidate models to capture the vapor–liquid equilibria, liquid–liquid equilibria, and phase densities of CO2/H2O mixtures. A comprehensive analysis reveals that Peng–Robinson equation of state (PR EOS) (Peng and Robinson 1976), Twu α function (Twu et al. 1991), Huron–Vidal mixing rule (Huron and Vidal 1979), and Abudour et al. (2013) volume translation model (Abudour et al. 2013) is the best model among the ones examined;it yields average absolute percentage errors of 5.49% and 2.90% in reproducing the experimental phase composition data and density data collected in the literature. After achieving the reliable modeling of phase compositions and densities, a new IFT correlation based on the aforementioned PR EOS model is proposed through a nonlinear regression of the measured IFT data collected from the literature over 278.15–477.59 K and 1.00–1200.96 bar. Although the newly proposed IFT correlation only slightly improves the prediction accuracy yielded by the refitted Chen and Yang (2019)’s correlation (Chen and Yang 2019), the proposed correlation avoids the inconsistent predictions present in Chen and Yang (2019)’s correlation and yields smooth IFT predictions.展开更多
Fast depletion of fossil fuels with its resources already passed its mid depletion region and the pollution levels already reached unsafe levels which make it utmost necessity to search for alternative fuels to meet s...Fast depletion of fossil fuels with its resources already passed its mid depletion region and the pollution levels already reached unsafe levels which make it utmost necessity to search for alternative fuels to meet sustainable energy demand with minimum environmental impact. Among alternative fuels, hydrogen is considered as the near future, long term renewable, sustainable and non-polluting fuel. In the present paper, hydrogen fueled internal combustion engine fundamentals highlighted and presented relating to hydrogen combustion properties. A Mat lab programmed hydrogen temperature-entropy-energy chart is developed and presented for fresh charge and products of combustion at different excess air factors per mole combustion gases. The chart, then, used to represent a SI hydrogen-fueled fuel/air cycle analysis, which proved to be valuable design tool for engine sizing and for prediction of engine performance. Predictions carried out using the hydrogen F/A cycle analysis at different λ show low brake specific fuel consumption and low volume specific power compared with conventional SI engine.展开更多
The supercritical H2O/CO2 mixture is the working fluid to drive a turbine in a novel power generation system with coal gasified in supercritical water.This system is promising because of zero pollution emission in con...The supercritical H2O/CO2 mixture is the working fluid to drive a turbine in a novel power generation system with coal gasified in supercritical water.This system is promising because of zero pollution emission in contrast to the conventional coal-fired power plant.Heat transfer coefficients of the supercritical H2O/CO2 mixtures are important to design heat transfer devices in this system,which is similar to the role of heat transfer to supercritical water in conventional systems.However,heat transfer to supercritical mixtures has received less attention.Here,we show that the supercritical mixtures with H2O being one of the components,have similar convection heat transfer behavior to supercritical pure fluids for temperatures and pressures above the critical point of H2O.This phenomenon was demonstrated from two aspects.Firstly,the forced convection heat transfer coefficients of supercritical mixtures were numerically calculated using the simulation model for supercritical pure fluids and using the thermophysical properties(density,heat capacity,thermal conductivity and viscosity)of supercritical mixtures as input.The calculated results agree well with experimental data in the supercritical region.Secondly,the calculated results also agree well with the correlations for supercritical pure fluids.The mechanisms were investigated by molecular dynamics simulations on the diffusion of supercritical mixtures.These results lay the foundation for predicting convection heat transfer coefficients of supercritical mixtures and for designing heat transfer devices with supercritical mixtures as heat transfer fluids.展开更多
The oxidative polycondensation reaction conditions of 4-[(4-hydroxybenzylidene) amino] phenol (4-HBAP) were studied with H2O2, air oxygen and NaOCl in an aqueous alkaline medium between 50 and 90℃. The structures...The oxidative polycondensation reaction conditions of 4-[(4-hydroxybenzylidene) amino] phenol (4-HBAP) were studied with H2O2, air oxygen and NaOCl in an aqueous alkaline medium between 50 and 90℃. The structures of the obtained monomer and polymer were confirmed by FT-IR, UV-Vis, 1H- and 13C-NMR and elemental analysis. The characterization was made by TG-DTA, size exclusion chromatography (SEC) and solubility tests. At the optimum reaction conditions, the yield of poly[4-(4-hydroxybenzylidene amino) phenol] (P-4-HBAP) was found to be 48.3% (for H2O2 oxidant), 80.5% (for air O2 oxidant) and 86.4% (for NaOCl oxidant). According to the SEC analysis, the number-average molecular weight (Mn), weight-average molecular weight (Mw) and polydispersity index (PDI) values of P-4-HBAP was found to be 8950, 10970 g tool^-1 and 1.225, respectively, using H202; and l l610, 15190 g tool^-1 and 1.308 respectively, using air 02 and 7900, 9610 g mol^-1 and 1.216, respectively, using NaOC1. According to TG-DTA analyses, P-4-HBAP was more stable than 4-HBAP against thermal decomposition. The weight loss of P-4-HBAP was found to be 49.27% at 1000℃. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) values calculated from electrochemical measurement. Electrochemical energy gaps (Eg') of 4-HBAP and P-4-HBAP were found to be -5.46, -5.28; -2.26, -2.67; 3.20 and 2.61 eV, respectively. According to UV-Vis measurements, optical band gap (Eg) of 4-HBAP and P-4-HBAP were found to be 3.34 and 3.01 eV, respectively. Also, antimicrobial activities of 4-HBAP and P-4-HBAP were examined against selected some bacteria. The electrical conductivity of the polymer was measured after doping with iodine.展开更多
Ambient concentrations of H<sub>2</sub>S were determined by modeling the H<sub>2</sub>S emissions dispersion for three sites located in the surroundings of oil and gas maritime terminal at the ...Ambient concentrations of H<sub>2</sub>S were determined by modeling the H<sub>2</sub>S emissions dispersion for three sites located in the surroundings of oil and gas maritime terminal at the southeast of Mexico. Hazard quotient is reported for different age groups. Paraiso City in Tabasco State reported the highest values for over 19 years old group (0.49). It was concluded that there was no threat to human health due to H<sub>2</sub>S emissions derived from the maritime terminal for the studied sites.展开更多
文摘This study aims to optimize the influence of the inlet inclination angle on the Indoor Air Quality(IAQ),heat,and temperature distribution in mixed convection within a two-dimensional square cavityfilled with an air-CO_(2)mixture.The air-CO_(2)mixture enters the cavity through two inlet openings positioned at the top wall,which is set at the ambient temperature(TC).Three values of the Reynolds numbers,ranging from 1000 to 2000,are considered,while the Prandtl number is kept constant(Pr=0.71).The temperature distribution and streamlines are shown for Rayleigh number(Ra)equal to 104,three inlet inclination anglesϕ(0,π/6 andπ/4)and three CO_(2)concentrations values(1500,2500,3500 ppm)applied at both hot vertical walls(maintained at a constant temperature TH).Afinite volume method is used under the assumption of two-dimensional laminarflow to solve the NavierStokes and energy equations.The results indicate that inlet inclination angle has an impact on the indoor air quality(IAQ),which,in turn,affects the heat transfer distribution and thermal comfort within the cavity.
基金National Natural Science Foundation of China(No.11375041).
文摘The non-chain chemical HF(DF)laser is one of the most powerful electrically-driven lasers operating in mid-infrared,in which SF6-C2H6 mixtures are often used as lasering media.Due to the electronegativity of SF6,the discharge in SF6-C2H6 presents a complicated discharge mode.To achieve reproducible pulsed laser output,pulsed discharge in SF6-C2H6 mixtures is investigated for discharge mode using plane electrodes assisted by array pre-ionization spark pins in cathode surface.Firstly,two modes can be distinguished.One mode is called the selfsustained volume discharge(SSVD),which is characterized by spatial uniformity in the discharge gap and pulse to pulse repeatability.On the contrary,another mode includes random arc passages in the discharge gap and therefore cannot conduct lasering.By varying discharge conditions(gap voltage,gas pressure,etc)two discharge modes are observed.Secondly,the holding scope of the SSVD mode is analyzed for the optimal mixture ratio of 20:1,and the boundary tend of the holding scope of SSVD indicates there exists maximum gas pressure and maximum charging voltage for SSVD.Finally,the peak current of SSVD relates positively to charging voltage,while negatively to gas pressure,from which it is drawn that synchronous electron avalanches initiated by the sliding array overlap spatially into SSVD and thus SSVD is essentially an α ionization avalanche.
基金the Talent Scientific Research Fund of LSHU (No. 2016XJJ-015)the fund of the Liaoning Provincial Department of Education (No. L2017LQN005)the National Natural Science Foundation of China (No. 21606120)
文摘Seven types of activated carbon were used to investigate the effect of their structure on separation of CO2 from(H2 + CO2) gas mixture by the adsorption method at ambient temperature and higher pressures. The results showed that the limiting factors for separation of CO2 from 53.6 mol% H2 + 46.4 mol% CO2 mixture and from 85.1 mol% H2 + 14.9 mol% CO2 mixture were different at 20 °C and about 2 MPa. The best separation result could be achieved when the pore diameter of the activated carbon ranged from 0.77 to 1.20 nm, and the median particle size was about2.07 lm for 53.6 mol% H2 + 46.4 mol% CO2 mixture and 1.41 lm for 85.1 mol% H2 + 14.9 mol% CO2 mixture. The effect of specific area and pore diameter of activated carbon on separation CO2 from 53.6 mol% H2 + 46.4 mol% CO2 mixture was more significant than that from 85.1 mol% H2 + 14.9 mol% CO2 mixture. CO2 in the gas phase can be decreased from 46.4 mol% to 2.3 mol%–4.3 mol% with a two-stage separation process.
文摘The corrosion of an Fe-based alloy containing 15 wt pct Y in H2-H2S mixtures under 10-3 Pa S2 was studied at 600~800℃ in an attempt to find materials with improved sulphidation resistance with respect to pure Fe. The presence of Y has been shown to be beneflcial, but not sufficient to the level expected. In fact, the alloy is able to form at all tested temperatures an external FeS layer, beneath which a zone containing a mixture of the two sulphides is also present. Thus,Fe can still diffuse through this region to form the outer FeS layer with non-negligible rate. The corrosion rate of Fe is considerably reduced by the Y addition. but the alloy corrodes still much more rapidly than Y. The sulphidation kinetics is generally rather irregular for both the pure metals, while the corrosion rate of the alloy decreases with time and tends to become parabolic after an initial period of 12~17 h. The sulphidation behaviour of the alloys is discussed by taking into account the presence of an intermetallic compound Fe17Y2 and the limited solubility of Y in Fe
基金This work was supported by Doctor Foundation of Hebei Education Committee Hebei Natural Science Foundation(599091 ) of China
文摘Monte Carlo simulations are adopted to study the electron motion in the mixture of H2 and CH4 during diamond synthesis via Glow Plasma-assisted Chemical Vapor Deposition (GPCVD). The non-uniform electric field is used and the avalanche of electrons is taken into account in this simulation. The average energy distribution of electrons and the space distribution of effective species such as CH3, CH+3, CH+ and H at various gas pressures are given in this paper, and optimum experimental conditions are inferred from these results.
基金Supported by the Natural Science Foundation of Guangdong Province (No. 031424).
文摘A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performance of the fuel cell was dependent on anode compartment H2S flow rate and concentration. The cell open-circuit voltage increased with increasing H2S flow rate. It was found that increasing both H2S flow rate and H2S concentration improved current-voltage and power density performance. This is resulted from improved gas diffusion in anode and increased concentration of anodic electroactive species. Operation at elevated H2S concentration improved the cell performance at a given gas flow rate. However, as low as 5% H2S in gas mixture can also be utilized as fuel feed to cells. Highest current and power densities, 17500mA·cm-2 and 200mW·cm-2, are obtained with pure H2S flow rate of 50ml·min-1 and air flow rate of 100ml·min-1 at 850℃.
文摘Phase behavior of carbon dioxide/water binary mixtures plays an important role in various CO2-based industry processes. This work aims to screen a thermodynamic model out of a number of promising candidate models to capture the vapor–liquid equilibria, liquid–liquid equilibria, and phase densities of CO2/H2O mixtures. A comprehensive analysis reveals that Peng–Robinson equation of state (PR EOS) (Peng and Robinson 1976), Twu α function (Twu et al. 1991), Huron–Vidal mixing rule (Huron and Vidal 1979), and Abudour et al. (2013) volume translation model (Abudour et al. 2013) is the best model among the ones examined;it yields average absolute percentage errors of 5.49% and 2.90% in reproducing the experimental phase composition data and density data collected in the literature. After achieving the reliable modeling of phase compositions and densities, a new IFT correlation based on the aforementioned PR EOS model is proposed through a nonlinear regression of the measured IFT data collected from the literature over 278.15–477.59 K and 1.00–1200.96 bar. Although the newly proposed IFT correlation only slightly improves the prediction accuracy yielded by the refitted Chen and Yang (2019)’s correlation (Chen and Yang 2019), the proposed correlation avoids the inconsistent predictions present in Chen and Yang (2019)’s correlation and yields smooth IFT predictions.
文摘Fast depletion of fossil fuels with its resources already passed its mid depletion region and the pollution levels already reached unsafe levels which make it utmost necessity to search for alternative fuels to meet sustainable energy demand with minimum environmental impact. Among alternative fuels, hydrogen is considered as the near future, long term renewable, sustainable and non-polluting fuel. In the present paper, hydrogen fueled internal combustion engine fundamentals highlighted and presented relating to hydrogen combustion properties. A Mat lab programmed hydrogen temperature-entropy-energy chart is developed and presented for fresh charge and products of combustion at different excess air factors per mole combustion gases. The chart, then, used to represent a SI hydrogen-fueled fuel/air cycle analysis, which proved to be valuable design tool for engine sizing and for prediction of engine performance. Predictions carried out using the hydrogen F/A cycle analysis at different λ show low brake specific fuel consumption and low volume specific power compared with conventional SI engine.
基金supported by the National Key R&D Program of China(Grant No.2016YFB0600100)the Fundamental Research Funds for the Central Universities(Grant No.30919011403)。
文摘The supercritical H2O/CO2 mixture is the working fluid to drive a turbine in a novel power generation system with coal gasified in supercritical water.This system is promising because of zero pollution emission in contrast to the conventional coal-fired power plant.Heat transfer coefficients of the supercritical H2O/CO2 mixtures are important to design heat transfer devices in this system,which is similar to the role of heat transfer to supercritical water in conventional systems.However,heat transfer to supercritical mixtures has received less attention.Here,we show that the supercritical mixtures with H2O being one of the components,have similar convection heat transfer behavior to supercritical pure fluids for temperatures and pressures above the critical point of H2O.This phenomenon was demonstrated from two aspects.Firstly,the forced convection heat transfer coefficients of supercritical mixtures were numerically calculated using the simulation model for supercritical pure fluids and using the thermophysical properties(density,heat capacity,thermal conductivity and viscosity)of supercritical mixtures as input.The calculated results agree well with experimental data in the supercritical region.Secondly,the calculated results also agree well with the correlations for supercritical pure fluids.The mechanisms were investigated by molecular dynamics simulations on the diffusion of supercritical mixtures.These results lay the foundation for predicting convection heat transfer coefficients of supercritical mixtures and for designing heat transfer devices with supercritical mixtures as heat transfer fluids.
基金This work was financially supported by the TUBITAK Grants Commission for a research grant(No.TBAG-2451(104T062)).
文摘The oxidative polycondensation reaction conditions of 4-[(4-hydroxybenzylidene) amino] phenol (4-HBAP) were studied with H2O2, air oxygen and NaOCl in an aqueous alkaline medium between 50 and 90℃. The structures of the obtained monomer and polymer were confirmed by FT-IR, UV-Vis, 1H- and 13C-NMR and elemental analysis. The characterization was made by TG-DTA, size exclusion chromatography (SEC) and solubility tests. At the optimum reaction conditions, the yield of poly[4-(4-hydroxybenzylidene amino) phenol] (P-4-HBAP) was found to be 48.3% (for H2O2 oxidant), 80.5% (for air O2 oxidant) and 86.4% (for NaOCl oxidant). According to the SEC analysis, the number-average molecular weight (Mn), weight-average molecular weight (Mw) and polydispersity index (PDI) values of P-4-HBAP was found to be 8950, 10970 g tool^-1 and 1.225, respectively, using H202; and l l610, 15190 g tool^-1 and 1.308 respectively, using air 02 and 7900, 9610 g mol^-1 and 1.216, respectively, using NaOC1. According to TG-DTA analyses, P-4-HBAP was more stable than 4-HBAP against thermal decomposition. The weight loss of P-4-HBAP was found to be 49.27% at 1000℃. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) values calculated from electrochemical measurement. Electrochemical energy gaps (Eg') of 4-HBAP and P-4-HBAP were found to be -5.46, -5.28; -2.26, -2.67; 3.20 and 2.61 eV, respectively. According to UV-Vis measurements, optical band gap (Eg) of 4-HBAP and P-4-HBAP were found to be 3.34 and 3.01 eV, respectively. Also, antimicrobial activities of 4-HBAP and P-4-HBAP were examined against selected some bacteria. The electrical conductivity of the polymer was measured after doping with iodine.
文摘Ambient concentrations of H<sub>2</sub>S were determined by modeling the H<sub>2</sub>S emissions dispersion for three sites located in the surroundings of oil and gas maritime terminal at the southeast of Mexico. Hazard quotient is reported for different age groups. Paraiso City in Tabasco State reported the highest values for over 19 years old group (0.49). It was concluded that there was no threat to human health due to H<sub>2</sub>S emissions derived from the maritime terminal for the studied sites.